323 research outputs found
Thallium Isotopic Compositions in Hawaiian Lavas: Evidence for Recycled Materials on the Kea Side of the Hawaiian Mantle Plume
Hawaiian volcanoes record 6 Ma of potentially deep mantle chemistry and form two parallel volcanic chains that are geochemically unique, named Loa and Kea. Loa volcanoes erupt lavas with isotopically enriched compositions thought to reflect the presence of recycled material in the deep mantle source of the Hawaiian plume. Variations in stable thallium (Tl) isotopes have been used to trace recycled pelagic ocean sediment from subduction to eruption in arc and intraplate lavas. Previous work attributed heavy Tl isotopic compositions in eight Loa samples to recycled sediments in their source. We reexamined this hypothesis using a large sample set (n = 34) of shield-stage, tholeiitic basalt from 13 Hawaiian volcanoes representing the entire range of isotopically enriched and depleted compositions along the Hawaiian chain. Samples were acid-leached prior to isotopic analysis to remove post-eruption alteration and resulting Δ205Tl values show statistical differences between Loa and Kea volcanoes. Corresponding isotopic data and re-analyzed trace element concentrations suggest that the Δ205Tl values are primary magmatic signatures. Possible co-variations between heavy Δ205Tl and oxygen isotopes in samples from Kea-trend volcanoes could reflect the presence of ancient, recycled pelagic sediment on the Kea side of the Hawaiian plume, which samples the average deep Pacific mantle. As such, the deep mantle source of both Loa and Kea Hawaiian volcanoes may contain recycled materials of different natures and recycling histories, which supports work from both geophysical and geochemical studies suggesting that the Earth's lower mantle is chemically heterogeneous on multiple spatial scales
Quasielastic Electron Scattering from Nuclei: Random-Phase vs. Ring Approximations
We investigate the extent to which the nuclear transverse response to
electron scattering in the quasielastic region, evaluated in the random-phase
approximation can be described by ring approximation calculations. Different
effective interactions based on a standard model of the type g'+V_pi+V_rho are
employed. For each momentum transfer, we have obtained the value of g'_0
permitting the ring response to match the position of the peak and/or the
non-energy weighted sum rule provided by the random-phase approach has been
obtained. It is found that, in general, it is not possible to reproduce both
magnitudes simultaneously for a given g'_0 value.Comment: 7 pages, 4 Postscript figures, to appear in Physical Review
Meson-exchange currents and quasielastic neutrino cross sections in the SuperScaling Approximation model
We evaluate the quasielastic double differential neutrino cross sections
obtained in a phenomenological model based on the superscaling behavior of
electron scattering data. We compare our results with the recent experimental
data for neutrinos of MiniBooNE and estimate the contribution of the vector
meson-exchange currents in the 2p-2h sector.Comment: 6 pages, 4 figure
Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet
We study the order parameter symmetry in a hexagonal crystal with co-existing
superconductivity and ferromagnetism. An experimental example is provided by
carbon-based materials, such as graphite-sulfur composites, in which an
evidence of such co-existence has been recently discovered. The presence of a
non-zero magnetization in the normal phase brings about considerable changes in
the symmetry classification of superconducting states, compared to the
non-magnetic case.Comment: 4 pages, REVTe
Relativistic pionic effects in quasielastic electron scattering
The impact of relativistic pionic correlations and meson-exchange currents on
the response functions for electromagnetic quasielastic electron scattering
from nuclei is studied in detail. Results in first-order perturbation theory
are obtained for one-particle emission electronuclear reactions within the
context of the relativistic Fermi gas model. Improving upon previous analyses
where non-relativistic reductions of the currents were performed, here a fully
relativistic analysis in which both forces and currents are treated
consistently is presented. Lorentz covariance is shown to play a crucial role
in enforcing the gauge invariance of the theory. Effects stemming uniquely from
relativity in the pionic correlations are identified and, in particular, a
comprehensive study of the self-energy contributions and of the currents
associated with the pion is presented. First- and second-kind scaling for high
momentum transfer is investigated.Comment: 43 pages, 21 figure
Extended Superscaling of Electron Scattering from Nuclei
An extended study of scaling of the first and second kinds for inclusive
electron scattering from nuclei is presented. Emphasis is placed on the
transverse response in the kinematic region lying above the quasielastic peak.
In particular, for the region in which electroproduction of resonances is
expected to be important, approximate scaling of the second kind is observed
and the modest breaking of it is shown probably to be due to the role played by
an inelastic version of the usual scaling variable.Comment: LaTeX, 36 pages including 5 color postscript figures and 4 postscript
figure
Superscaling of Inclusive Electron Scattering from Nuclei
We investigate the degree to which the concept of superscaling, initially
developed within the framework of the relativistic Fermi gas model, applies to
inclusive electron scattering from nuclei. We find that data obtained from the
low energy loss side of the quasielastic peak exhibit the superscaling
property, i.e., the scaling functions f(\psi') are not only independent of
momentum transfer (the usual type of scaling: scaling of the first kind), but
coincide for A \geq 4 when plotted versus a dimensionless scaling variable
\psi' (scaling of the second kind). We use this behavior to study as yet poorly
understood properties of the inclusive response at large electron energy loss.Comment: 33 pages, 12 color EPS figures, LaTeX2e using BoxedEPSF macros; email
to [email protected]
Performance Issues in U.S.âChina Joint Ventures
Based on an in-depth study of U.S.-China joint ventures, this article offers some insights into the performance of such international business relationships. While the conventional literature treats government as an amorphous aspea of the political-legal environment, in this case government is an active participant and influence in the performance of international joint ventures (UVs). It has both a constraining and enabling effect on LJV structure, strategy, and performance. For example, limits can be placed on ownership shares of joint ventures and on prices of the output. At the same time, government can cooperate with LJVs and foreign parent companies by creating partners for foreign parent companies, acting as major customers, and improving financial performance by lowering taxes
- âŠ