66,254 research outputs found

    A Dirac Sea and thermodynamic equilibrium for the quantized three-wave interaction

    Full text link
    The classical version of the three wave interaction models the creation and destruction of waves; the quantized version models the creation and destruction of particles. The quantum three wave interaction is described and the Bethe Ansatz for the eigenfunctions is given in closed form. The Bethe equations are derived in a rigorous fashion and are shown to have a thermodynamic limit. The Dirac sea of negative energy states is obtained as the infinite density limit. Finite particle/hole excitations are determined and the asymptotic relation of energy and momentum is obtained. The Yang-Yang functional for the relative free energy of finite density excitations is constructed and is shown to be convex and bounded below. The equations of thermal equilibrium are obtained

    Engineering plants for animal feed for improved nutritional value

    Get PDF
    Feed formulation to meet nutritional requirements of livestock is becoming increasingly challenging. Regulations have banned the use of traditional high-quality protein supplements such as meat-and-bone meal, pollution from animal excreta of N and P is an issue and antibiotics are no longer available as insurance against the impact of enteric infection and feed anti-nutritional factors. The improved genetic potential of livestock is increasing daily requirement for energy and protein (essential amino acids). To benefit from the enhanced growth potential of livestock diets with high nutrient density are needed that can be formulated from crops without increased cost. Genetic modification of commodity crops used to manufacture animal feed in order to improve the density and quality of available nutrients is a potential solution to some of these problems. Furthermore, crops may be used as biofactories to produce molecules and products used in animal feed with considerable reductions in manufacturing fixed costs. Nevertheless, there are considerable not insurmountable challenges, such as the creation of sufficient economic value to deliver benefit to all members in the feed production chain, which is an essential element of identity preserving and delivering the technology to livestock producers. Individual output traits in the major commodity crops may not provide sufficient value to adequately compensate all the members of the feed production chain. Successful adoption of output traits may rely on inserting combinations of agronomic input traits with specific quality traits or increasing the value proposition by inserting combinations of output trait

    Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    Get PDF
    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values

    Molecular production at a wide Feshbach resonance in Fermi-gas of cooled atoms

    Full text link
    The problem of molecular production from degenerate gas of fermions at a wide Feshbach resonance, in a single-mode approximation, is reduced to the linear Landau-Zener problem for operators. The strong interaction leads to significant renormalization of the gap between adiabatic levels. In contrast to static problem the close vicinity of exact resonance does not play substantial role. Two main physical results of our theory is the high sensitivity of molecular production to the initial value of magnetic field and generation of a large BCS condensate distributed over a broad range of momenta in inverse process of the molecule dissociation.Comment: 4 pages, no figure

    Microscopic study of the effect of intrinsic degrees of freedom on fusion

    Full text link
    Fusion cross-sections are computed for the 40^{40}Ca+40+^{40}Ca system over a wide energy range with two microscopic approaches where the only phenomenological input is the Skyrme energy density functional. The first method is based on the coupled-channels formalism, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock technique and the deformation parameters of vibrational states computed with the time-dependent Hartree-Fock (TDHF) approach. The second method is based on the density-constrained TDHF method to generate nucleus-nucleus potentials from TDHF evolution. Both approaches incorporate the effect of couplings to internal degrees of freedoms in different ways. The predictions are in relatively good agreement with experimental data.Comment: 6 pages, 11 figures. Invited talk to FUSION1

    Spin Dynamics near the Superconductor-to-Insulator Transition in Impurity-Doped YBa2Cu4O8

    Full text link
    We studied low-frequency spin dynamics near the impurity-induced superconductor-to-insulator transition for underdoped high-Tc superconductor YBa2(Cu1-xMx)4O8 (M=Ni, Zn) using the Cu nuclear quadrupole resonance (NQR) spin-echo technique. We observed remarkable suppression of the normal-state pseudo spin-gap and a loss of Cu NQR spectrum intensity at low temperatures around the critical impurity concentration.Comment: 6 pages, 4 figures. To be published in J. Phys. Soc. Jpn. Vol.70, No.7 (2001

    Nanoindentation-induced deformation of Ge

    Get PDF
    The deformation mechanisms of crystalline (100) Ge were studied using nanoindentation, cross sectional transmission electron microscopy (XTEM) and Raman microspectroscopy. For a wide range of indentation conditions using both spherical and pointed indenters, multiple discontinuities were found in the force–displacement curves on loading, but no discontinuities were found on unloading. Raman microspectroscopy, measured from samples which had plastically deformed on loading, showed a spectrum shift from that in pristine Ge, suggesting only residual strain. No evidence (such as extra Raman bands) was found to suggest that any pressure-induced phase transformations had occurred, despite the fact that the material had undergone severe plastic deformation.Selected area diffraction pattern studies of the mechanically damaged regions also confirmed the absence of additional phases. Moreover, XTEM showed that, at low loads, plastic deformation occurs by twinning and dislocation motion. This indicates that the hardness of Gemeasured by indentation is not primarily dominated by phase transformation, rather by the nucleation and propagation of twin bands and/or dislocations
    • …
    corecore