73,504 research outputs found
State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy
We consider a connection-level model of Internet congestion control,
introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000)
185--201], that represents the randomly varying number of flows present in a
network. Here, bandwidth is shared fairly among elastic document transfers
according to a weighted -fair bandwidth sharing policy introduced by Mo
and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] []. Assuming Poisson arrivals and exponentially distributed document
sizes, we focus on the heavy traffic regime in which the average load placed on
each resource is approximately equal to its capacity. A fluid model (or
functional law of large numbers approximation) for this stochastic model was
derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083]
by two of the authors. Here, we use the long-time behavior of the solutions of
the fluid model established in that paper to derive a property called
multiplicative state space collapse, which, loosely speaking, shows that in
diffusion scale, the flow count process for the stochastic model can be
approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A preliminary look at AVE-SESAME 1 conducted on 10-11 April 1979
Preliminary information on the general weather conditions during the AVE-SESAME 1 period is presented together with a summary of severe weather reports
Beyond Patient Reported Pain: Perfusion Magnetic Resonance Imaging Demonstrates Reproducible Cerebral Representation of Ongoing Post-Surgical Pain
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Hot Electron Capture Dissociation Distinguishes Leucine from Isoleucine in a Novel Hemoglobin Variant, Hb Askew, ÎČ54(D5)ValâIle
Population migration has led to the global dispersion of human hemoglobinopathies and has precipitated a need for their identification. An effective mass spectrometry-based procedure involves analysis of the intact α- and ÎČ-globin chains to determine their mass, followed by location of the variant amino acid residue by direct analysis of the enzymatically digested chains and low-energy collision induced dissociation of the variant peptide. Using this procedure, a variant was identified as either ÎČ54ValâLeu or ÎČ54ValâIle, since the amino acids leucine and isoleucine cannot be distinguished using low-energy collisions. Here, we describe how hot electron capture dissociation on a Fourier transform-ion cyclotron resonance mass spectrometer was used to distinguish isoleucine from leucine and identify the mutation as ÎČ54(D5)ValâIle. This is a novel variant, and we have named it Hb Askew
Quantum Algorithm for Triangle Finding in Sparse Graphs
This paper presents a quantum algorithm for triangle finding over sparse
graphs that improves over the previous best quantum algorithm for this task by
Buhrman et al. [SIAM Journal on Computing, 2005]. Our algorithm is based on the
recent -query algorithm given by Le Gall [FOCS 2014] for
triangle finding over dense graphs (here denotes the number of vertices in
the graph). We show in particular that triangle finding can be solved with
queries for some constant whenever the graph
has at most edges for some constant .Comment: 13 page
Finding the Minimum-Weight k-Path
Given a weighted -vertex graph with integer edge-weights taken from a
range , we show that the minimum-weight simple path visiting
vertices can be found in time \tilde{O}(2^k \poly(k) M n^\omega) = O^*(2^k
M). If the weights are reals in , we provide a
-approximation which has a running time of \tilde{O}(2^k
\poly(k) n^\omega(\log\log M + 1/\varepsilon)). For the more general problem
of -tree, in which we wish to find a minimum-weight copy of a -node tree
in a given weighted graph , under the same restrictions on edge weights
respectively, we give an exact solution of running time \tilde{O}(2^k \poly(k)
M n^3) and a -approximate solution of running time
\tilde{O}(2^k \poly(k) n^3(\log\log M + 1/\varepsilon)). All of the above
algorithms are randomized with a polynomially-small error probability.Comment: To appear at WADS 201
Thin front propagation in random shear flows
Front propagation in time dependent laminar flows is investigated in the
limit of very fast reaction and very thin fronts, i.e. the so-called
geometrical optics limit. In particular, we consider fronts evolving in time
correlated random shear flows, modeled in terms of Ornstein-Uhlembeck
processes. We show that the ratio between the time correlation of the flow and
an intrinsic time scale of the reaction dynamics (the wrinkling time ) is
crucial in determining both the front propagation speed and the front spatial
patterns. The relevance of time correlation in realistic flows is briefly
discussed in the light of the bending phenomenon, i.e. the decrease of
propagation speed observed at high flow intensities.Comment: 5 Revtex4 pages, 4 figures include
Proteomics reveals that a high-fat diet induces rapid changes in hypothalamic proteins related to neuronal damage and inflammation
Peer reviewedPublisher PD
Re-analysis of the âAkronâ Airship Pressure Data to Design Pressure Measurement Experiments on an Underwater Vehicle
Pressure experimental data from NACA tests on the airship âAkronâ were reanalysed in this study. The pressure distribution over the bare hull of the airship were presented by using 3D pressure surfaces and 2D pressure contours for different pitch angles. By integration of the normal pressures at each panel over the bare hull of the airship, the axial and normal forces and the pitching moment exerted on the hull were derived. The paper has a brief introduction on how to use this re-analysis of the old experiment data to plan pressure-measurement experiments on an underwater vehicle
- âŠ