Front propagation in time dependent laminar flows is investigated in the
limit of very fast reaction and very thin fronts, i.e. the so-called
geometrical optics limit. In particular, we consider fronts evolving in time
correlated random shear flows, modeled in terms of Ornstein-Uhlembeck
processes. We show that the ratio between the time correlation of the flow and
an intrinsic time scale of the reaction dynamics (the wrinkling time tw) is
crucial in determining both the front propagation speed and the front spatial
patterns. The relevance of time correlation in realistic flows is briefly
discussed in the light of the bending phenomenon, i.e. the decrease of
propagation speed observed at high flow intensities.Comment: 5 Revtex4 pages, 4 figures include