4,334 research outputs found
Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates
Controlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester–carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ring-opening copolymerization catalysis, using epoxides coupled with anhydrides or CO2, to produce polyesters and polycarbonates. In particular, the structures and performances of various homogeneous catalysts are presented for the epoxide–anhydride copolymerization. The properties of the resultant polyesters and polycarbonates are presented and future opportunities highlighted for developments of both the materials and catalysts
Pressure-induced delocalization of photoexcited states in a semiconducting polymer.
We present broadband transient absorption spectroscopy on the fluorescent copolymer poly(9,9-dioctylfluorene-co-benzothiadiazole) under hydrostatic pressure of up to 75Â kbar. We observe a strong reduction of the stimulated emission intensity under pressure, coupled with slower decay kinetics and reduced fluorescence intensity. These observations indicate increased delocalization of photogenerated singlet excitons, facilitated by an increased dielectric constant at high pressure. Spin triplet excitons, generated via an iridium complex-F8BT oligomer, show reduced lifetimes under pressure
Greater than the Sum of its Parts: A Heterodinuclear Polymerization Catalyst
Homodinuclear
catalysts have good precedent for epoxide and carbon
dioxide/anhydride copolymerizations; in contrast, so far pure heterodinuclear
catalysts are unknown. The synthesis and properties of a heterodinuclear
ZnÂ(II)/MgÂ(II) complex coordinated by a symmetrical macrocyclic ligand
are reported. It shows high polymerization selectivity, control, and
significantly greater activity compared to either of the homodinuclear
analogues or any combinations of them. Indeed, compared to a 50:50
mixture of the homodinuclear complexes, it shows 5 times (CO<sub>2</sub>/epoxide) or 40 times (anhydride/epoxide) greater activity
Simple Phosphinate Ligands Access New Zinc Clusters Identified in the Synthesis of Zinc Oxide Nanoparticles
The bottom-up synthesis of ligand-stabilised functional nanoparticles from molecular precursors is widely applied but difficult to study mechanistically. Here, we use 31P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of new ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly, and self-assemble in solution based on thermodynamic equilibria, rather than nucleation kinetics. These clusters are also identified, in situ, during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. As well as a versatile and accessible route to new (optionally doped) zinc clusters, the findings provide a new understanding of the role of well-defined molecular precursors during the synthesis of small (2-4 nm) nanoparticles
Metal-Size Influence in Iso-Selective Lactide Polymerization
Iso-selective initiators for the ring-opening polymerization (ROP) of rac-lactide are rare outside of Group 13. We describe the first examples of highly iso-selective lutetium initiators. The phosphasalen lutetium ethoxide complex shows excellent iso-selectivity, with a Pi value of 0.81–0.84 at 298 K, excellent rates, and high degrees of polymerization control. Conversely, the corresponding La derivative exhibits moderate heteroselectivity (Ps=0.74, 298 K). Thus, the choice of metal center is shown to be crucial in determining the level and mode of stereocontrol. The relative order of rates for the series of complexes is inversely related to metallic covalent radius: that is, La>Y>Lu
- …