3,854 research outputs found

    Monolayers of 3He on the Surface of Bulk Superfluid 4He

    Full text link
    We have used quantum evaporation to investigate the two-dimensional fermion system that forms at the free surface of (initially isotopically pure) 4He when small quantities of 3He are added to it. By measuring the first-arrival times of the evaporated atoms, we have determined that the 3He-3He potential in this system is V_3S/k_B=(0.23+/-0.02) K nm^2 (repulsive) and estimated a value of m_3S=(1.53+/-0.02)m_3 for the zero-coverage effective mass. We have also observed the predicted second layer-state which becomes occupied once the first layer-state density exceeds about 0.6 monolayers.Comment: 2 pages, 3 figures. Submitted to Proc. LT-22 (1999) to appear in Physica

    Relative Evaporation Probabilities of 3He and 4He from the Surface of Superfluid 4He

    Full text link
    We report a preliminary experiment which demonstrates that 3He atoms in Andreev states are evaporated by high-energy (E/k_B ~ 10.2 K) phonons in a quantum evaporation process similar to that which occurs in pure 4He. Under conditions of low 3He coverage, high-energy phonons appear to evaporate 3He and 4He atoms with equal probability. However, we have not managed to detect any 3He atoms that have been evaporated by rotons, and conclude that the probability of a roton evaporating a 3He atom is less than 2% of the probability that it evaporates a 4He atom.Comment: 2 pages, 3 figures. Submitted to Proc. LT-22 (1999) Physica

    Hinode/Extreme-Ultraviolet Imaging Spectrometer Observations of the Temperature Structure of the Quiet Corona

    Full text link
    We present a Differential Emission Measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on {\it Hinode}. We show that the expected quiet Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log\log T = 5.6 to 6.4 K that can be used to derive the DEM distribution reliably. The subset can be used without the need for extensive measurements and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1"" pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet Sun datasets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log\log T \sim 6.2 K in all cases. This result is consistent with the view that the {\it shape} of the quiet Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This {\it universal} DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet Sun region to region.Comment: Version accepted by ApJ and published in ApJ 705. Abridged abstrac

    Observations of Active Region Loops with the EUV Imaging Spectrometer on Hinode

    Full text link
    Previous solar observations have shown that coronal loops near 1 MK are difficult to reconcile with simple heating models. These loops have lifetimes that are long relative to a radiative cooling time, suggesting quasi-steady heating. The electron densities in these loops, however, are too high to be consistent with thermodynamic equilibrium. Models proposed to explain these properties generally rely on the existence of smaller scale filaments within the loop that are in various stages of heating and cooling. Such a framework implies that there should be a distribution of temperatures within a coronal loop. In this paper we analyze new observations from the EUV Imaging Spectrometer (EIS) on \textit{Hinode}. EIS is capable of observing active regions over a wide range of temperatures (\ion{Fe}{8}--\ion{Fe}{17}) at relatively high spatial resolution (1\arcsec). We find that most isolated coronal loops that are bright in \ion{Fe}{12} generally have very narrow temperature distributions (σT3×105\sigma_T \lesssim 3\times10^5 K), but are not isothermal. We also derive volumetric filling factors in these loops of approximately 10%. Both results lend support to the filament models.Comment: Submitted to ApJ

    Hinode EUV Imaging Spectrometer Observations of Solar Active Region Dynamics

    Full text link
    The EUV Imaging Spectrometer (EIS) on the Hinode satellite is capable of measuring emission line center positions for Gaussian line profiles to a fraction of a spectral pixel, resulting in relative solar Doppler-shift measurements with an accuracy of less than a km/s for strong lines. We show an example of the application of that capability to an active region sit-and-stare observation in which the EIS slit is placed at one location on the Sun and many exposures are taken while the spacecraft tracking keeps the same solar location within the slit. For the active region examined (NOAA 10930), we find that significant intensity and Doppler-shift fluctuations as a function of time are present at a number of locations. These fluctuations appear to be similar to those observed in high-temperature emission lines with other space-borne spectroscopic instruments. With its increased sensitivity over earlier spectrometers and its ability to image many emission lines simultaneously, EIS should provide significant new constraints on Doppler-shift oscillations in the corona.Comment: 7 Pages, 7 figure

    Increased levels of B1 and B2 SINE transcripts in mouse fibroblast cells due to minute virus of mice infection

    Get PDF
    AbstractMinute virus of mice (MVM), an autonomous parvovirus, has served as a model for understanding parvovirus infection including host cell response to infection. In this paper, we report the effect of MVM infection on host cell gene expression in mouse fibroblast cells (LA9 cells), analyzed by differential display. Somewhat surprisingly, our data reveal that few cellular protein-coding genes appear to be up- or downregulated and identify the murine B1 and B2 short interspersed element (SINE) transcripts as being increased upon MVM infection. Primer extension assays confirm the effect of MVM infection on SINE expression and demonstrate that both SINEs are upregulated in a roughly linear fashion throughout MVM infection. They also demonstrate that the SINE response was due to RNA polymerase III transcription and not contaminating DNA or RNA polymerase II transcription. Furthermore, expression of MVM NS1, the major nonstructural protein, by transient transfection also leads to an increase in both murine SINEs. We believe this is the first time that the B1 and B2 SINEs have been shown to be altered by viral infection and the first time parvovirus infection has been shown to increase SINE expression. The increase in SINE transcripts caused by MVM infection does not appear to be due to an increase in either of the basal transcription factors TFIIIC110 or 220, in contrast to that which has been shown for other viruses

    Observations of Transient Active Region Heating with Hinode

    Full text link
    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track the evolution of coronal plasma. The evolution of the emission observed with XRT and EIS during these events is generally consistent with loops that have been heated and are cooling. We have analyzed the most energetic heating event observed during this period, a small GOES B-class flare, in some detail and present some of the spectral signatures of the event, such as relative Doppler shifts at one of the loop footpoints and enhanced line widths during the rise phase of the event. While the analysis of these transient events has the potential to yield insights into the coronal heating mechanism, these observations do not rule out the possibility that there is a strong steady heating level in the active region. Detailed statistical analysis will be required to address this question definitively

    Observations and simulations of recurrent novae: U Sco and V394 CrA

    Get PDF
    Observations and analysis of the Aug. 1987 outburst of the recurrent nova V394 CrA are presented. This nova is extremely fast and its outburst characteristics closely resemble those of the recurrent nova U Sco. Hydrodynamic simulations of the outbursts of recurrent novae were performed. Results as applied to the outbursts of V394 CrA and U Sco are summarized

    Observations of classical novae in outburst

    Get PDF
    The IUE obtained ultraviolet data on novae in outburst. The characteristics of every one of the outbursts are different. Optical and infrared data on many of the same novae were also obtained. Three members of the carbon-oxygen class of novae are presented

    Broadband polarization-entangled source for C+L-band flex-grid quantum networks

    Full text link
    The rising demand for transmission capacity in optical networks has motivated steady interest in expansion beyond the standard C-band (1530-1565 nm) into the adjacent L-band (1565-1625 nm), for an approximate doubling of capacity in a single stroke. However, in the context of quantum networking, the ability to leverage the L-band will require advanced tools for characterization and management of entanglement resources which have so far been lagging. In this work, we demonstrate an ultrabroadband two-photon source integrating both C- and L-band wavelength-selective switches for complete control of spectral routing and allocation across 7.5 THz in a single setup. Polarization state tomography of all 150 pairs of 25 GHz-wide channels reveals an average fidelity of 0.98 and total distillable entanglement greater than 181 kebits/s. This source is explicitly designed for flex-grid optical networks and can facilitate optimal utilization of entanglement resources across the full C+L-band.Comment: 5 pages, 4 figure
    corecore