95,154 research outputs found
Holographic analysis of thin films
Technique for monitoring deposition of films on surfaces, in place on a real-time basis, reads both the thickness and the uniformity of the deposited film. Holograms are produced from both reflected and transmitted light on one plate
Silver-base ternary alloy proves superior for slip ring lead wires
Slip ring lead wires composed of ternary alloys of silver, have high electrical conductivity, a tensile strength of at least 30,000 psi, high ductility, and are solderable and weldable. An unexpected advantage of these alloys is their resistance to discoloration on heating in air
Report of Workshop on Methodology for Evaluating Potential Lunar Resources Sites
The type and quantity of lunar materials needed to support a space power satellite program was used to define the type and quality of geological information required to certify a site for exploitation. The existing geological, geochemical, and geophysical data are summarized. The difference between these data and the required data for exploitation is used to define program requirements. Most of these requirements involve linear extensions of existing capabilities, fuller utilization of existing data, or expanded use of automated systems
A Bait Attractant Study of the Nitidulidae (Coleoptera) at Shawnee State Forest in Southern Ohio
Four baits were tested for efficacy in attracting sap beetles (Nitidulidae) at two sites in the Shawnee State Forest over two collection periods in 1992. Species taken were categorized into three groups: abundant, moderate, and uncommon. At Site 1, nitidulids displayed a strong preference for whole wheat bread dough, followed by fermenting brown sugar, and fermenting malt/molasses solution, and vinegar, respectively. Site 2 collections showed a similar trend to Site 1, but the order of preference was switched for brown sugar and malt/molasses solution. Of the 20 species collected, six species were abundant, seven species were moderate, and seven species were locally uncommon
Effects of large disorder on the Hofstadter butterfly
Motivated by the recent experiments on periodically modulated, two
dimensional electron systems placed in large transversal magnetic fields, we
investigate the interplay between the effects of disorder and periodic
potentials in the integer quantum Hall regime. In particular, we study the case
where disorder is larger than the periodic modulation, but both are small
enough that Landau level mixing is negligible. In this limit, the
self-consistent Born approximation is inadequate. We carry extensive numerical
calculations to understand the relevant physics in the lowest Landau level,
such as the spectrum and nature (localized or extended) of the wave functions.
Based on our results, we propose a qualitative explanation of the new features
uncovered recently in transport measurements.Comment: 15 pages, 13 figures, several pictures have been shrunk to comply
with the size requirement
Ultrasonic nondestructive evaluation of impact-damaged graphite fiber composite
Unidirectional Hercules AS/3501-6 graphite fiber epoxy composites were subjected to repeated controlled low-velocity drop weight impacts in the laminate direction. The degradation was ultrasonically monitored using through-thickness attenuation and a modified stress wave factor (SWF). There appears to be strong correlations between the number of drop-weight impacts, the residual tensile strength, the through-thickness attenuation, and the SWF. The results are very encouraging with respect to the NDE potential of both of these ultrasonic parameters to provide strength characterizations in virgin as well as impact-damaged fiber composite structures
State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy
We consider a connection-level model of Internet congestion control,
introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000)
185--201], that represents the randomly varying number of flows present in a
network. Here, bandwidth is shared fairly among elastic document transfers
according to a weighted -fair bandwidth sharing policy introduced by Mo
and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] []. Assuming Poisson arrivals and exponentially distributed document
sizes, we focus on the heavy traffic regime in which the average load placed on
each resource is approximately equal to its capacity. A fluid model (or
functional law of large numbers approximation) for this stochastic model was
derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083]
by two of the authors. Here, we use the long-time behavior of the solutions of
the fluid model established in that paper to derive a property called
multiplicative state space collapse, which, loosely speaking, shows that in
diffusion scale, the flow count process for the stochastic model can be
approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Long distance ion-water interactions in aqueous sulfate nanodrops persist to ambient temperatures in the upper atmosphere.
The effect of temperature on the patterning of water molecules located remotely from a single SO42- ion in aqueous nanodrops was investigated for nanodrops containing between 30 and 55 water molecules using instrument temperatures between 135 and 360 K. Magic number clusters with 24, 36 and 39 water molecules persist at all temperatures. Infrared photodissociation spectroscopy between 3000 and 3800 cm-1 was used to measure the appearance of water molecules that have a free O-H stretch at the nanodroplet surface and to infer information about the hydrogen bonding network of water in the nanodroplet. These data suggest that the hydrogen bonding network of water in nanodrops with 45 water molecules is highly ordered at 135 K and gradually becomes more amorphous with increasing temperature. An SO42- dianion clearly affects the hydrogen bonding network of water to at least ∼0.71 nm at 135 K and ∼0.60 nm at 340 K, consistent with an entropic drive for reorientation of water molecules at the surface of warmer nanodrops. These distances represent remote interactions into at least a second solvation shell even with elevated instrumental temperatures. The results herein provide new insight into the extent to which ions can structurally perturb water molecules even at temperatures relevant to Earth's atmosphere, where remote interactions may assist in nucleation and propagation of nascent aerosols
- …