4,065 research outputs found

    Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects

    Get PDF
    The circadian clock plays a crucial role in coordinating plant metabolic and physiological functions with predictable environmental variables, such as dusk and dawn, while also modulating responses to biotic and abiotic challenges. Much of the initial characterization of the circadian system has focused on transcriptional initiation, but it is now apparent that considerable regulation is exerted after this key regulatory step. Transcript processing, protein stability, and cofactor availability have all been reported to influence circadian rhythms in a variety of species. We used a genetic screen to identify a mutation within a putative RNA binding protein (SPLICEOSOMAL TIMEKEEPER LOCUS1 [STIPL1]) that induces a long circadian period phenotype under constant conditions. STIPL1 is a homolog of the spliceosomal proteins TFP11 (Homo sapiens) and Ntr1p (Saccharomyces cerevisiae) involved in spliceosome disassembly. Analysis of general and alternative splicing using a high-resolution RT-PCR system revealed that mutation of this protein causes less efficient splicing of most but not all of the introns analyzed. In particular, the altered accumulation of circadian-associated transcripts may contribute to the observed mutant phenotype. Interestingly, mutation of a close homolog of STIPL1, STIP-LIKE2, does not cause a circadian phenotype, which suggests divergence in function between these family members. Our work highlights the importance of posttranscriptional control within the clock mechanism. © 2012 American Society of Plant Biologists. All rights reserved

    The star-formation law at GMC scales in M33, the Triangulum Galaxy

    Get PDF
    We present a high spatial resolution study, on scales of \sim100pc, of the relationship between star-formation rate (SFR) and gas content within Local Group galaxy M33. Combining deep SCUBA-2 observations with archival GALEX, SDSS, WISE, Spitzer and submillimetre Herschel data, we are able to model the entire SED from UV to sub-mm wavelengths. We calculate the SFR on a pixel-by-pixel basis using the total infrared luminosity, and find a total SFR of 0.17±0.06M0.17 \pm 0.06\,\rm{M}_\odot/yr, somewhat lower than our other two measures of SFR -- combined FUV and 24μ\mum SFR (0.250.07+0.10M0.25^{+0.10}_{-0.07}\,\rm{M}_\odot/yr) and SED-fitting tool MAGPHYS (0.330.06+0.05M0.33^{+0.05}_{-0.06}\,\rm{M}_\odot/yr). We trace the total gas using a combination of the 21cm HI line for atomic hydrogen, and CO(J\textit{J}=2-1) data for molecular hydrogen. We have also traced the total gas using dust masses. We study the star-formation law in terms of molecular gas, total gas, and gas from dust. We perform an analysis of the star-formation law on a variety of pixel scales, from 25^{\prime\prime} to 500^{\prime\prime} (100pc to 2kpc). At kpc scales, we find that a linear Schmidt-type power law index is suitable for molecular gas, but the index appears to be much higher with total gas, and gas from dust. Whilst we find a strong scale dependence on the Schmidt index, the gas depletion timescale is invariant with pixel scale.Comment: 19 pages, 15 figures, accepted for publication in MNRA

    Waste not, want not: CO2 (re)cycling into block polymers

    Get PDF
    A new way to combine two different polymerisation reactions, using a single catalyst, results in efficient block polymer synthesis. The selective polymerisation of mixtures of L-lactide-O-carboxyanhydride and cyclohexene oxide, using a di-zinc catalyst in a one-pot procedure, allows the preparation of poly(L-lactide-b-cyclohexene carbonate). The catalysis near quantitatively recycles the carbon dioxide released during polyester formation into the subsequent polycarbonate block, with an atom economy of up to of 91%

    Long Term Radio Monitoring of SN 1993J

    Get PDF
    We present our observations of the radio emission from supernova (SN) 1993J, in M 81 (NGC 3031), made with the VLA, from 90 to 0.7 cm, as well as numerous measurements from other telescopes. The combined data set constitutes probably the most detailed set of measurements ever established for any SN outside of the Local Group in any wavelength range. Only SN 1987A in the LMC has been the subject of such an intensive observational program. The radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-SN stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The 85 - 110 GHz measurements at early times are not well fitted by the parameterization, unlike the cm wavelength measurements. 2) At mid-cm wavelengths there is some deviation from the fitted radio light curves. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens without change in the spectral index. This decline is best described as an exponential decay starting at day 3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until the break in that decline rate. Moreover, neither a purely SSA nor a purely FFA absorbing models can provide a fit that simultaneously reproduces the light curves, the spectral index evolution, and the brightness temperature evolution. 5) The radio and X-ray light curves exhibit similar behavior and suggest a sudden drop in the SN progenitor mass-loss rate at ~8000 years prior to shock breakout.Comment: 45 pages, 13 figures, accepted for Ap

    Mindfulness-Oriented Recovery Enhancement for Chronic Pain and Prescription Opioid Misuse: Results from an Early Stage Randomized Controlled Trial

    Get PDF
    Objective: Opioid pharmacotherapy is now the leading treatment for chronic pain, a problem that affects nearly one third of the U.S. population. Given the dramatic rise in prescription opioid misuse and opioid-related mortality, novel behavioral interventions are needed. The purpose of this study was to conduct an early-stage randomized controlled trial of Mindfulness-Oriented Recovery Enhancement (MORE), a multimodal intervention designed to simultaneously target mechanisms underpinning chronic pain and opioid misuse. Method: Chronic pain patients (N = 115; mean age = 48 ± 14 years; 68% female) were randomized to 8 weeks of MORE or a support group (SG). Outcomes were measured at pre- and posttreatment, and at 3-month follow-up. The Brief Pain Inventory was used to assess changes in pain severity and interference. Changes in opioid use disorder status were measured by the Current Opioid Misuse Measure. Desire for opioids, stress, nonreactivity, reinterpretation of pain sensations, and reappraisal were also evaluated. Results: MORE participants reported significantly greater reductions in pain severity (p = .038) and interference (p = .003) than SG participants, which were maintained by 3-month follow-up and mediated by increased nonreactivity and reinterpretation of pain sensations. Compared with SG participants, participants in MORE evidenced significantly less stress arousal (p = .034) and desire for opioids (p = .027), and were significantly more likely to no longer meet criteria for opioid use disorder immediately following treatment (p = .05); however, these effects were not sustained at follow-up. Conclusions: Findings demonstrate preliminary feasibility and efficacy of MORE as a treatment for co-occurring prescription opioid misuse and chronic pain

    Quantifying the complexities of Saccharomyces cerevisiae's ecosystem engineering via fermentation

    Get PDF
    The theory of niche construction suggests that organisms may engineer environments via their activities. Despite the potential of this phenomenon being realized by Darwin, the capability of niche construction to generally unite ecological and evolutionary biology has never been empirically quantified. Here I quantify the fitness effects of Saccharomyces cerevisiae's ecosystem engineering in a natural ferment in order to understand the interaction between ecological and evolutionary processes. 1 show that S. cerevisiae eventually dominates in fruit niches, where it is naturally initially rare, by modifying the environment through fermentation (the Crabtree effect) in ways which extend beyond just considering ethanol production. These data show that an additional cause of S. cerevisiae's competitive advantage over the other yeasts in the community is due to the production of heat via fermentation. Even though fermentation is less energetically efficient than respiration, it seems that this trait has been selected for because its net effect provides roughly a 7% fitness advantage over the other members of the community. These data provide an elegant example of niche construction because this trait clearly modifies the environment and therefore the selection pressures to which S. cerevisiae, and other organisms that access the fruit resource, including humans, are exposed to. © 2008 by the Ecological Society of America

    High-resolution radiative transfer modelling of M33

    Get PDF
    The authors thank the anonymous reviewer, whose comments have certainly improved the manuscript. The authors also thank Peter Camps for valuable technical advice, along with all of the participants at the recent SKIRT meeting for comments and discussions. I.D.L. gratefully acknowledges the supports of the Research Foundation – Flanders (FWO). M.W.L.S acknowledges funding from the UK Science and Technology Facilities Council consolidated grant ST/K000926/1. M.R. acknowledges support by the research projects AYA2014-53506-P and AYA2017-84897P from the Spanish Ministerio de Econom´ıa y Competitividad. This research made use of MONTAGE (http://montage.ipac.caltech.edu/), which is funded by the National Science Foundation under Grant Number ACI-1440620, and was previously funded by the National Aeronautics and Space Administration’s Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. This research has made use of Astropy, a community-developed core PYTHON package for Astronomy (http: //www.astropy.org/; Astropy Collaboration et al. 2013, 2018). This research has made use of NumPy (http://www.numpy.org/; van der Walt, Colbert & Varoquaux 2011), SciPy (http://www.scipy.org/), andMatPlotLib (http://matplotlib.org/; Hunter 2007). This research made use of APLpy, an open-source plotting package for PYTHON (https://aplpy.github.io/; Robitaille & Bressert 2012).In this work, we characterize the contributions from both ongoing star formation and the ambient radiation field in Local Group galaxy M33, as well as estimate the scale of the local dust-energy balance (i.e. the scale at which the dust is re-emitting starlight generated in that same region) in this galaxy through high-resolution radiative transfer (RT) modelling, with defined stellar and dust geometries. We have characterized the spectral energy distribution (SED) of M33 from UV to sub-mm wavelengths, at a spatial scale of 100 pc. We constructed input maps of the various stellar and dust geometries for use in the RTmodelling. By modifying our dust mix (fewer very small carbon grains and a lower silicate-to-carbon ratio as compared to the Milky Way), we can much better fit the sub-mm dust continuum. Using this new dust composition, we find that we are able to well reproduce the observed SED of M33 using our adopted model. In terms of stellar attenuation by dust, we find a reasonably strong, broad UV bump, as well as significant systematic differences in the amount of dust attenuation when compared to standard SED modelling.We also find discrepancies in the residuals of the spiral arms versus the diffuse interstellar medium (ISM), indicating a difference in properties between these two regimes. The dust emission is dominated by heating due to the young stellar populations at all wavelengths (∼80 per cent at 10 μm to ∼50 per cent at 1 mm). We find that the local dust-energy balance is restored at spatial scales greater than around 1.5 kpc.Funding from the UK Science and Technology Facilities Council consolidated grant ST/K000926/1. M.R. acknowledges support by the research projects AYA2014-53506-P and AYA2017-84897P from the Spanish Ministerio de Economía y Competitividad. This research made use of MONTAGE (http://montage.ipac.caltech.edu/), which is funded by the National Science Foundation under Grant Number ACI-1440620, and was previously funded by the National Aeronautics and Space Administration’s Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technolog

    A high-resolution, dust-selected molecular cloud catalogue of M33, the Triangulum galaxy

    Get PDF
    We present a catalogue of Giant Molecular Clouds (GMCs) in M33, extracted from cold dust continuum emission. Our GMCs are identified by computing dendrograms. We measure the spatial distribution of these clouds, and characterise their dust properties. Combining these measured properties with CO(J=2–1) and 21cm H i data, we calculate the gas-to-dust ratio (GDR) of these clouds, and from this compute a total cloud mass. In total, we find 165 GMCs with cloud masses in the range of 104-107 M⊙. We find that radially, log10(GDR) = −0.043( ± 0.038) R[kpc] + 1.88( ± 0.15), a much lower GDR than found in the Milky Way, and a correspondingly higher αCO factor. The mass function of these clouds follows a slope proportional to M−2.84, steeper than many previous studies of GMCs in local galaxies, implying that M33 is poorer at forming massive clouds than other nearby spirals. Whilst we can rule out interstellar pressure as the major contributing factor, we are unable to disentangle the relative effects of metallicity and H i velocity dispersion. We find a reasonably featureless number density profile with galactocentric radius, and weak correlations between galactocentric radius and dust temperature/mass. These clouds are reasonably consistent with Larson’s scaling relationships, and many of our sources are co-spatial with earlier CO studies. Massive clouds are identified at large galactocentric radius, unlike in these earlier studies, perhaps indicating a population of CO-dark gas dominated clouds at these larger distances

    Mass Flows in Cometary UCHII Regions

    Full text link
    High spectral and spatial resolution, mid-infrared fine structure line observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon R2) allow us to study the structure and kinematics of cometary UCHII regions. In our earlier study of Mon R2, we showed that highly organized mass motions accounted for most of the velocity structure in that UCHII region. In this work, we show that the kinematics in both Mon R2 and G29.96 are consistent with motion along an approximately paraboloidal shell. We model the velocity structure seen in our mapping data and test the stellar wind bow shock model for such paraboloidal like flows. The observations and the simulation indicate that the ram pressures of the stellar wind and ambient interstellar medium cause the accumulated mass in the bow shock to flow along the surface of the shock. A relaxation code reproduces the mass flow's velocity structure as derived by the analytical solution. It further predicts that the pressure gradient along the flow can accelerate ionized gas to a speed higher than that of the moving star. In the original bow shock model, the star speed relative to the ambient medium was considered to be the exit speed of ionized gas in the shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ, September 200
    corecore