21,675 research outputs found

    Fuel penalties and time flexibility of 4D flight profiles under mismodeled wind conditions

    Get PDF
    A parametric sensitivity study was conducted to evaluate time flexibility and fuel penalties associated with 4D operations in the presence of mismodeled wind. The final cruise and descent segments of a flight in an advanced time-metered air traffic control environment were considered. Optimal performance of a B-737-100 airplane in known, constant winds was determined. Performance in mismodeled wind was obtained by tracking no-wind reference profiles in the presence of actual winds. The results of the analysis are presented in terms of loss of time flexibility and fuel penalties compared to the optimum performance in modeled winds

    Traffic scenario generation technique for piloted simulation studies

    Get PDF
    Piloted simulation studies of cockpit traffic display concepts require the development of representative traffic scenarios. With the exception of specific aircraft interaction issues, most research questions can be addressed using traffic scenarios consisting of prerecorded aircraft movements merged together to form a desired traffic pattern. Prerecorded traffic scenarios have distinct research advantages, allowing control of traffic encounters with repeatability of scenarios between different test subjects. A technique is described for generation of prerecorded jet transport traffic scenarios suitable for use in piloted simulation studies. Individual flight profiles for the aircraft in the scenario are created interactively with a computer program designed specifically for this purpose. The profiles are then time-correlated and merged into a complete scenario. This technique was used to create traffic scenarios for the Denver, Colorado area with operations centered at Stapleton International Airport. Traffic scenarios for other areas may also be created using this technique, with appropriate modifications made to the navigation fix locations contained in the flight profile generation program

    Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    Get PDF
    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS

    Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    Get PDF
    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept

    Feeding Records of Aphids (Hemiptera: Aphididae) From Wisconsin

    Get PDF
    Basic to our understanding of any animal and its habitat requirements is knowing what it eats. Reported here are observations of feeding by 27 species of aphids encountered in Wisconsin over 1992-2002

    Photoreactivation of Lethal Damage Induced in Hamster X Xenopus Hybrid Cells and Their Parentals by UV Light

    Get PDF
    A85 Xenopus cells that exhibited a high level of photoreactivation (PR) and V79B2 hamster cells that exhibited little PR were fused to produce the V79B2 x A85 cell line — a hybrid line which possessed a relatively stable karyotype, with most cells containing the entire V79B2 and A85 genomes. UV and UV plus PR fluence-survival relations were then determined and compared for the hybrid and parental lines in a first attempt to elucidate interactions of the parental PR mechanisms in the hybrid. It was anticipated that the A85 genome in the hybrid would produce PR enzyme in sufficient concentration and of such a nature as to efficiently PR UV-induced lethal damage in both A85 and V79B2 DNA, and little difference would be observed in the levels of PR exhibited by the V79B2 x A85 and A85 lines. To the contrary, the level of PR observed for the hybrid was substantially below that observed for the A85 line. To assist in the interpretation of this unexpected observation, three additional preliminary studies were carried out: 1) Comparison of the optimum PR schemes for the A85 and hybrid lines, 2) examination of relations between the PR and dark UV repair mechanisms possessed by these lines, and 3) comparison of the levels of PR of chromatid deletions induced by UV in selected V79B2 and A85 chromosomes of the hybrid. The results suggested that the relatively low level of PR manifested by the hybrid cells was a consequence of their inability to efficiently PR pyrimidine dimers induced by UV in V79B2 DNA

    What Dan Quayle Doesn\u27t Know about Punitive Damages

    Get PDF
    • …
    corecore