4,465 research outputs found

    Spillovers from the Gridiron: Evidence from Women’s Collegiate Basketball

    Get PDF
    This paper empirically investigates whether schools with an intercollegiate football team experience greater attendance at women’s basketball games. The empirical question is important because if football increases attendance and hence revenue to other sports then these benefits should be included when considering the net benefits of football. Using a cross-section of 329 Division IA women’s basketball programs from 2005-2006, we find that having a football program corresponds with an increase in per-game attendance of approximately 500 people. This spill-over benefit of having a football team should be credited against the costs of starting and maintaining a football team.NCAA, college sports, positive externalities

    Time-resolved velocity map imaging of methyl elimination from photoexcited anisole

    Get PDF
    To date, H-atom elimination from heteroaromatic molecules following UV excitation has been extensively studied, with the focus on key biological molecules such as chromophores of DNA bases and amino acids. Extending these studies to look at elimination of other non-hydride photoproducts is essential in creating a more complete picture of the photochemistry of these biomolecules in the gas-phase. To this effect, CH3 elimination in anisole has been studied using time resolved velocity map imaging (TR-VMI) for the first time, providing both time and energy information on the dynamics following photoexcitation at 200 nm. The extra dimension of energy afforded by these measurements has enabled us to address the role of πσ* states in the excited state dynamics of anisole as compared to the hydride counterpart (phenol), providing strong evidence to suggest that only CH3 fragments eliminated with high kinetic energy are due to direct dissociation involving a 1πσ* state. These measurements also suggest that indirect mechanisms such as statistical unimolecular decay could be contributing to the dynamics at much longer times

    Targeting colorectal cancer with anti-epidermal growth factor receptor antibodies: focus on panitumumab

    Get PDF
    The tumor biology targeted therapies have improved outcomes in colorectal cancer (CRC). The epidermal growth factor receptor (EGFR) inhibitors represent one of these successful strategies. EGFR is frequently overexpressed in CRCs and associated with a malignant phenotype. Two EGFR inhibitors have shown efficacy in metastatic CRC, cetuximab and panitumumab. Cetuximab is a human–mouse chimeric monoclonal antibody that binds to the extracellular domain of the EGF-receptor. Similarly, panitumumab is a fully humanized monoclonal IgG2 antibody, directed against EGFR. Being fully humanized, panitumumab does not contain mouse protein reducing the risk of hypersensitivity. In a pivotal clinical trial, panitumumab was well tolerated and effective, demonstrating an objective response rate of 10% vs best supportive care (ORR = 0%; P < 0.0001). Panitumumab was approved for the treatment of mCRC by the FDA in 2006. Studies combining panitumumab with cytotoxic chemotherapy and other targeted therapies have been completed while others are ongoing to further evaluate the clinical utility of this agent. Recently it has been demonstrated that mutations in KRAS predict the efficacy of panitumumab and cetuximab, limiting their use to CRC patients with wild-type KRAS, and moving the clinical field towards personalized cancer care

    Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects

    Get PDF
    The circadian clock plays a crucial role in coordinating plant metabolic and physiological functions with predictable environmental variables, such as dusk and dawn, while also modulating responses to biotic and abiotic challenges. Much of the initial characterization of the circadian system has focused on transcriptional initiation, but it is now apparent that considerable regulation is exerted after this key regulatory step. Transcript processing, protein stability, and cofactor availability have all been reported to influence circadian rhythms in a variety of species. We used a genetic screen to identify a mutation within a putative RNA binding protein (SPLICEOSOMAL TIMEKEEPER LOCUS1 [STIPL1]) that induces a long circadian period phenotype under constant conditions. STIPL1 is a homolog of the spliceosomal proteins TFP11 (Homo sapiens) and Ntr1p (Saccharomyces cerevisiae) involved in spliceosome disassembly. Analysis of general and alternative splicing using a high-resolution RT-PCR system revealed that mutation of this protein causes less efficient splicing of most but not all of the introns analyzed. In particular, the altered accumulation of circadian-associated transcripts may contribute to the observed mutant phenotype. Interestingly, mutation of a close homolog of STIPL1, STIP-LIKE2, does not cause a circadian phenotype, which suggests divergence in function between these family members. Our work highlights the importance of posttranscriptional control within the clock mechanism. © 2012 American Society of Plant Biologists. All rights reserved

    Synthesis of Zeolite A from Iraqi Natural Kaolin Using a Conventional Hydrothermal Synthesis Technique

    Get PDF
    The synthesis of zeolite materials by hydrothermal transformation of kaolin using a conventional hydrothermal method was investigated. Different analytical techniques were used to characterize the starting kaolin and produced zeolite A samples, including scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray diffraction (XRD), x-ray fluorescence (XRF), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The synthetic zeolite type A was obtained after activation of kaolin and metakaolin followed by different thermal and chemical treatments. The metakaolinization phase was achieved by calcining the kaolin in air at 600°C for 3 hours, a much lower temperature than previously reported in the literature. Metakaolin was treated with 3 M sodium hydroxide solution at a ratio of 1:5 and, using stainless steel autoclaves with teflon liners, heated the mixture to 200°C in a microwave for 24 hours. The results from this synthesis route showed that zeolite A with a cubic crystal habit has been successfully synthesized

    Mapping Low-Density Intergalactic Gas: a Third Helium Lyman-alpha Forest

    Full text link
    We present a new HST/STIS spectrum of the z=3.18 quasar PKS 1935-692 and summarize the spectral features shortwards of 304A in the rest frame likely to be caused by foreground HeII Lyman-alpha absorption. In accord with previous results on two other quasars at similar redshifts, we demonstrate a correlation with the HI Lyman-alpha forest absorption, and show that much of the helium absorption is caused by a comparable quantity of more diffuse gas with Omega~0.01, that is not detected in HI. The helium ionization zone around the quasar is detected as well as a void seen in both HI and HeII. The properties of the absorption are in broad agreement with those of the other quasars and with models of the protogalactic gas distribution and ionization at this redshift.Comment: 17 pages including 5 figures. As accepted for publication in The Astronomical Journal (minor revisions

    Kinetic study of metal ion adsorption from wastewater onto coal industry by-products

    Get PDF
    Se llevó a cabo un estudio comparativo sobre el uso de cenizas volantes y clinker natural como adsorbentes de metales pesados de agua contaminada a partir de experimentos de adsorción a temperatura ambiente. Las concentraciones de metales pesados en los filtrados se determinaron por espectrometría de emisión atómica por plasma inductivamente acoplado. En los estudios de adsorción en batch, la retención aumento con el aumento del tiempo de contacto, la cantidad de adsorbente y el pH de la solución. La adsorción de los metales a partir de la solución contaminada artificialmente fue Cr>Cu>Pb>Ni>Zn, mientras que a partir de drenaje ácido de mina fue Pb>Zn>As>Fe>Cr>Cu>Ni. Las constantes de primer orden de Lagergren se calcularon para concentraciones iniciales de iones metálicos específicas, dando un excelente ajuste como lo indica el coeficiente de correlación (R2), con valores próximos o iguales a 1 para el tratamiento de la solución contaminada artificialmente y de 0.25 a 0.99 para el tratamiento del drenaje ácido de mina. Los datos de este estudio revelan que los cationes metálicos en solución acuosa pueden ser adsorbidos exitosamente en cantidades significativas por los adsorbentes usados

    Raman scattering mediated by neighboring molecules

    Get PDF
    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process
    corecore