32 research outputs found

    Stratospheric Gravity Waves Excited by a Propagating Rossby Wave Train—A DEEPWAVE Case Study

    Get PDF
    There are only a few airborne observations of middle-atmospheric gravity waves in the Southern Hemisphere (Fritts et al. 2016; Rapp et al. 2021). Research flights to latitudes south of 608S are especially rare (e.g., Tuck et al. 1989; Parish and Bromwich 1989; Carli et al. 2000). These early airborne campaigns were mainly motivated by ozone research (Tuck et al. 1997; Tuck 2021) but also documented mesoscale temperature fluctuations (Gary 2008), gravity waves (Bacmeister et al. 1990), and turbulence (Tuck 2008). One of the more recent research flights was conducted during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) experiment in July 2014 using the instrumented NSF/NCAR Gulfstream V research aircraft from an operating base in Christchurch, New Zealand (Fritts et al. 2016). The DEEPWAVE research flight 25 (RF25) went straight southwest from New Zealand to about 638S and returned along the same path back, see Fig. 1. The scientific objectives of this survey flight into the atmospheric flow above the Southern Ocean were based on operational forecasts by a suite of high resolution numerical weather prediction (NWP) models (Fritts et al. 2016, their Table 3) and were formulated as follows prior to the actual flight

    Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and Mesospheric Temperature Mapper measurements at ALOMAR, Norway (69°N)

    Get PDF
    New measurements at the ALOMAR observatory in northern Norway (69°N, 16°E) using the Weber sodium lidar and the Advanced Mesospheric Temperature Mapper (AMTM) allow for a comprehensive investigation of a gravity wave (GW) event on 22 and 23 January 2012 and the complex and varying propagation environment in which the GW was observed. These observational techniques provide insight into the altitude ranges over which a GW may be evanescent or propagating and enable a clear distinction in specific cases. Weber sodium lidar measurements provide estimates of background temperature, wind, and stability profiles at altitudes from ~78 to 105 km. Detailed AMTM temperature maps of GWs in the OH emission layer together with lidar measurements quantify estimates of the observed and intrinsic GW parameters centered near 87 km. Lidar measurements of sodium densities also allow more precise identification of GW phase structures extending over a broad altitude range. We find for this particular event that the extent of evanescent regions versus regions allowing GW propagation can vary largely over a period of hours and significantly change the range of altitudes over which a GW can propagate

    Quantifying gravity wave momentum fluxes with mesosphere temperature mappers and correlative instrumentation

    Get PDF
    An Advanced Mesosphere Temperature Mapper and other instruments at the Arctic Lidar Observatory for Middle Atmosphere Research in Norway (69.3°N) and at Logan and Bear Lake Observatory in Utah (42°N) are used to demonstrate a new method for quantifying gravity wave (GW) pseudo-momentum fluxes accompanying spatially and temporally localized GW packets. The method improves on previous airglow techniques by employing direct characterization of the GW temperature perturbations averaged over the OH airglow layer and correlative wind and temperature measurements to define the intrinsic GW properties with high confidence. These methods are applied to two events, each of which involves superpositions of GWs having various scales and character. In each case, small-scale GWs were found to achieve transient, but very large, momentum fluxes with magnitudes varying from ~60 to 940 m2 s−2, which are ~1–2 decades larger than mean values. Quantification of the spatial and temporal variations of GW amplitudes and pseudo-momentum fluxes may also enable assessments of the total pseudo-momentum accompanying individual GW packets and of the potential for secondary GW generation that arises from GW localization. We expect that the use of this method will yield key insights into the statistical forcing of the mesosphere and lower thermosphere by GWs, the importance of infrequent large-amplitude events, and their effects on GW spectral evolution with altitude

    Mesospheric Bore Evolution and Instability Dynamics Observed in PMC Turbo Imaging and Rayleigh Lidar Profiling over Northeastern Canada on 13 July 2018

    Get PDF
    Two successive mesospheric bores were observed over northeastern Canada on 13 July 2018 in high-resolution imaging and Rayleigh lidar profiling of polar mesospheric clouds (PMCs) performed aboard the PMC Turbo long-duration balloon experiment. Four wide field-of-view cameras spanning an area of ~75x150 km at PMC altitudes captured the two evolutions occurring over ~2 hr and resolved bore and associated instability features as small as ~100 m. The Rayleigh lidar provided PMC backscatter profiling that revealed vertical displacements, evolving brightness distributions, evidence of instability character and depths, and insights into bore formation, ducting, and dissipation. Both bores exhibited variable structure along their phases, suggesting variable gravity wave (GW) source and bore propagation conditions. Both bores also exhibited small-scale instability dynamics at their leading and trailing edges. Those at the leading edges comprised apparent Kelvin-Helmholtz instabilities that were advected downward and rearward beneath the bore descending phases extending into an apparently intensified shear layer. Instabilities at the trailing edges exhibited alignments approximately orthogonal to the bore phases that resembled those seen to accompany GW breaking or intrusions arising in high-resolution modeling of GW instability dynamics. Collectively, PMC Turbo bore imaging and lidar profiling enabled enhanced definition of bore dynamics relative to what has been possible by previous ground-based observations, and a potential to guide new, three-dimensional modeling of bore dynamics. The observed bore evolutions suggest potentially important roles for bores in the deposition of energy and momentum transported into the mesosphere and to higher altitudes by high-frequency GWs achieving large amplitudes

    Dynamics of orographic gravity waves observed in the mesosphere over Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    Get PDF
    On 14 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), aircraft remote sensing instruments detected large-amplitude gravity wave oscillations within mesospheric airglow and sodium layers at altitudes z ~ 78–83 km downstream of the Auckland Islands, located ~1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event. At 0700 UTC when the first observations were made, surface flow across the islands’ terrain generated linear three-dimensional wave fields that propagated rapidly to z ~ 78 km, where intense breaking occurred in a narrow layer beneath a zero-wind region at z ~ 83 km. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wave fields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wave fields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward flow accelerations of ~350 m s−1 h−1 and dynamical heating rates of ~8 K h−1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter

    Momentum Flux Spectra of a Mountain Wave Event Over New Zealand

    Get PDF
    During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight over the South Island of New Zealand, a multiscale spectrum of mountain waves (MWs) was observed. High-resolution measurements of sodium densities were available from ~70 to 100 km for the duration of this flight. A comprehensive technique is presented for obtaining temperature perturbations, T′, from sodium mixing ratios over a range of altitudes, and these T′ were used to calculate the momentum flux (MF) spectra with respect to horizontal wavelengths, λH, for each flight segment. Spectral analysis revealed MWs with spectral power centered at λH of ~80, 120, and 220 km. The temperature amplitudes of these MWs varied between the four cross-mountain flight legs occurring between 6:10UT and 9:10UT. The average spectral T′ amplitudes near 80 km in altitude ranged from 7–13 K for the 220 km λH MW and 4–8 K for the smaller λH MWs. These amplitudes decayed significantly up to 90 km, where a critical level for MWs was present. The average MF per unit mass near 80 km in altitude ranged from ~13 to 60 m2/s2 across the varying spectra over the duration of the research flight and decayed to ~0 by 88 km in altitude. These MFs are large compared to zonal means and highlight the importance of MWs in the momentum budget of the mesosphere and lower thermosphere at times when they reach these altitudes

    Does Strong Tropospheric Forcing Cause Large-Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case Study

    Get PDF
    On 4 July 2014, during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), strong low-level horizontal winds of up to 35 m s−1 over the Southern Alps, New Zealand, caused the excitation of gravity waves having the largest vertical energy fluxes of the whole campaign (38 W m−2). At the same time, large-amplitude mesospheric gravity waves were detected by the Temperature Lidar for Middle Atmospheric Research (TELMA) located at Lauder (45.0°S, 169.7°E), New Zealand. The coincidence of these two events leads to the question of whether the mesospheric gravity waves were generated by the strong tropospheric forcing. To answer this, an extensive data set is analyzed, comprising TELMA, in situ aircraft measurements, radiosondes, wind lidar measurements aboard the DLR Falcon as well as Rayleigh lidar and advanced mesospheric temperature mapper measurements aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V. These measurements are further complemented by limited area simulations using a numerical weather prediction model. This unique data set confirms that strong tropospheric forcing can cause large-amplitude gravity waves in the mesosphere, and that three essential ingredients are required to achieve this: first, nearly linear propagation across the tropopause; second, leakage through the stratospheric wind minimum; and third, amplification in the polar night jet. Stationary gravity waves were detected in all atmospheric layers up to the mesosphere with horizontal wavelengths between 20 and 100 km. The complete coverage of our data set from troposphere to mesosphere proved to be valuable to identify the processes involved in deep gravity wave propagation
    corecore