9,653 research outputs found

    Why we love music : a case study of high school principals.

    Get PDF
    The purpose of this qualitative study was to explore the viewpoints and value of music in the public schools from the perspective of high school principals. Principals from five high schools in an urban school district in a southern metropolitan area were interviewed. All schools that were a part of this study varied geographically and socioeconomically. Each school had a curricular program for band, choir, and orchestra and a highly-qualified teacher directing the programs. Interview questions ranged from their own participation in band, choir, or orchestra when they were in any level of school, what roles they see music as having in their school, and why they choose to keep music in their schools when, elsewhere, programs are being cut to save money. The administrators had a high regard for music in their own lives, as well as in the lives of their students. Some of these principals even viewed music as a direct supporter of the 21st century skills that are so widely emphasized and promoted. Music is actively supported at all levels of this school district, from the Board of Education to the individual students

    The Panchromatic Hubble Andromeda Treasury. VI. The reliability of far-ultraviolet flux as a star formation tracer on sub-kpc scales

    Full text link
    We have used optical observations of resolved stars from the Panchromatic Hubble Andromeda Treasury (PHAT) to measure the recent (< 500 Myr) star formation histories (SFHs) of 33 FUV-bright regions in M31. The region areas ranged from ~10410^4 to 10610^6 pc2^2, which allowed us to test the reliability of FUV flux as a tracer of recent star formation on sub-kpc scales. The star formation rates (SFRs) derived from the extinction-corrected observed FUV fluxes were, on average, consistent with the 100-Myr mean SFRs of the SFHs to within the 1σ\sigma scatter. Overall, the scatter was larger than the uncertainties in the SFRs and particularly evident among the smallest regions. The scatter was consistent with an even combination of discrete sampling of the initial mass function and high variability in the SFHs. This result demonstrates the importance of satisfying both the full-IMF and the constant-SFR assumptions for obtaining precise SFR estimates from FUV flux. Assuming a robust FUV extinction correction, we estimate that a factor of 2.5 uncertainty can be expected in FUV-based SFRs for regions smaller than 10510^5 pc2^2, or a few hundred pc. We also examined ages and masses derived from UV flux under the common assumption that the regions are simple stellar populations (SSPs). The SFHs showed that most of the regions are not SSPs, and the age and mass estimates were correspondingly discrepant from the SFHs. For those regions with SSP-like SFHs, we found mean discrepancies of 10 Myr in age and a factor of 3 to 4 in mass. It was not possible to distinguish the SSP-like regions from the others based on integrated FUV flux.Comment: Accepted for publication in The Astrophysical Journa

    Virtual Forestry Generation: Evaluating Models for Tree Placement in Games

    Get PDF
    A handful of approaches have been previously proposed to generate procedurally virtual forestry for virtual worlds and computer games, including plant growth models and point distribution methods. However, there has been no evaluation to date which assesses how effective these algorithms are at modelling real-world phenomena. In this paper, we tackle this issue by evaluating three algorithms used in the generation of virtual forests—a randomly uniform point distribution method (control), a plant competition model, and an iterative random point distribution technique. Our results show that a plant competition model generated more believable content when viewed from an aerial perspective. Interestingly, however, we also found that a randomly uniform point distribution method produced forestry which was rated higher in playability and photorealism, when viewed from a first-person perspective. We conclude that the objective of the game designer is important to consider when selecting an algorithm to generate forestry, as the algorithms produce forestry that is perceived differently

    Mapping Low-Density Intergalactic Gas: a Third Helium Lyman-alpha Forest

    Full text link
    We present a new HST/STIS spectrum of the z=3.18 quasar PKS 1935-692 and summarize the spectral features shortwards of 304A in the rest frame likely to be caused by foreground HeII Lyman-alpha absorption. In accord with previous results on two other quasars at similar redshifts, we demonstrate a correlation with the HI Lyman-alpha forest absorption, and show that much of the helium absorption is caused by a comparable quantity of more diffuse gas with Omega~0.01, that is not detected in HI. The helium ionization zone around the quasar is detected as well as a void seen in both HI and HeII. The properties of the absorption are in broad agreement with those of the other quasars and with models of the protogalactic gas distribution and ionization at this redshift.Comment: 17 pages including 5 figures. As accepted for publication in The Astronomical Journal (minor revisions

    The Singular Hydrodynamic Interactions Between Two Spheres In Stokes Flow

    Get PDF
    We study exact solutions for the slow viscous flow of an infinite liquid caused by two rigid spheres approaching each either along or parallel to their line of centres, valid at all separations. This goes beyond the applicable range of existing solutions for singular hydrodynamic interactions (HIs) which, for practical applications, are limited to the near-contact or far field region of the flow. For the normal component of the HI, by use of a bipolar coordinate system, we derive the stream function for the flow as Re→0Re\to 0 and a formula for the singular (squeeze) force between the spheres as an infinite series. We also obtain the asymptotic behaviour of the forces as the nondimensional separation between the spheres goes to zero and infinity, rigorously confirming and improving upon known results relevant to a widely accepted lubrication theory. Additionally, we recover the force on a sphere moving perpendicularly to a plane as a special case. For the tangential component, again by using a bipolar coordinate system, we obtain the corresponding infinite series expression of the (shear) singular force between the spheres. All results hold for retreating spheres, consistent with the reversibility of Stokes flow. We demonstrate substantial differences in numerical simulations of colloidal fluids when using the present theory compared with existing multipole methods. Furthermore, we show that the present theory preserves positive definiteness of the resistance matrix R\boldsymbol{R} in a number of situations in which positivity is destroyed for multipole/perturbative methods.Comment: 28 pages, 12 Figure
    • 

    corecore