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Mixing of a passive scalar in magnetically forced two-dimensional
turbulence

Benjamin S. Williams, D. Marteau, and J. P. Golluba)
Department of Physics, Haverford College, Haverford, Pennsylvania 19041
and Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 13 August 1996; accepted 18 February 1997!

More than 35 years ago, Batchelor discussed from a theoretical point of view the spatial power
spectrumEu(k) of a weakly diffusing impurity mixed by a turbulent fluid flow. Under plausible
assumptions including the random straining of fluid elements,Eu(k) is expected to scale ask

21 for
a range of wave numbersk beyond the cutoff of the energy spectrum, followed by a diffusive tail
at a wave number determined by the rate of strain and the diffusivity. Some experiments over the
years appear to support this conclusion, while others do not. We have investigated this issue
experimentally in a quasi-two-dimensional turbulent flow, established in a thin buoyant layer that is
electromagnetically forced by an array of permanent magnets beneath the cell. The wave number
cutoff of the velocity field is established by particle image velocimetry, and the fluctuations are
determined to be homogeneous and isotropic. To study mixing, a dye solution is introduced steadily
at one side of the buoyant layer, and mixed fluid is extracted at the other until the fluctuations
become steady. The time-averaged spatial power spectrum of the dye concentration distribution is
measured for several distinct forcing configurations, including both regular and random magnet
arrays; the latter produces convincingly isotropic concentration fluctuations. We find thatEu(k) falls
strongly belowk21 at wave numbers lower than expected from theory. The results do not appear to
depend significantly on the scalar injection parameters or on the magnet arrangement. Periodic
forcing at higher viscosity leads to chaotic rather than turbulent flows, with little change in
Eu(k). The observations can be explained in part by the intermittency characteristic of these
two-dimensional flows, where the stretching of fluid elements is localized in space and time.
© 1997 American Institute of Physics.@S1070-6631~97!03306-0#

I. INTRODUCTION

When a weakly diffusing passive impurity is introduced
into a turbulent fluid, regions of high concentration are
stretched and folded repeatedly. This process creates thin
striations with large concentration gradients. The large gra-
dients enhance diffusion, so that uniformity is achieved at
the smallest scales. If the source of impurity is continuous so
that a steady-state situation can be achieved, then spectral
analysis is an appropriate method for characterizing the mix-
ing process. More than 30 yr ago, Batchelor1 considered this
problem in detail, and concluded that the power spectrum of
the impurity should show a region proportional tok21 at
wave numbers higher thankK , the inverse of the Kolmog-
orov scale, but smaller than a diffusive wave number cutoff
that is generally called the Batchelor wave numberkB . This
interval is called the viscous-convective wave number range.

In part because of the importance of mixing in many
applications of fluid dynamics, e.g. in oceanography and at-
mospheric science, many investigators have explored the
spectral properties of advected impurities experimentally2–6

and numerically;7–10 we review these contributions in Sec.
II D. However, the various investigations are not consistent
with each other with regard to the observations ofk21 scal-
ing in the viscous-convective range. In this paper, we present
an experimental study of the spectrum of passive scalar mix-

ing for a two-dimensional turbulent flow. We focus on the
case of a weakly diffusing impurity~a fluorescent dye! for
which the Batchelor regime is expected to be well defined.
This case corresponds to high Schmidt number~Sc5 n/k,
wheren is the kinematic viscosity of the fluid andk is the
diffusivity of the scalar!. The flow is driven electromagneti-
cally using a current and static magnetic fields.

The two-dimensional situation is advantageous in that
the entire flow can be imaged simultaneously with video
methods. This allows direct computation of spatial power
spectra, as opposed to other experimental arrangements that
require single-point temporal measurements. In addition, the
velocity field can be measured using particle image veloci-
metry, so that the intimate connections between the concen-
tration and velocity fields can be explored.

The results of this investigation reveal strong deviations
from Batchelor scaling; the scalar spectrum falls strongly
belowk21 at wave numbers lower than expected. A consid-
erable effort has been devoted to exploring the possible rea-
sons for this behavior. Many potential experimental explana-
tions have been eliminated~nonlinearity of the dye; lack of
stationarity or homogeneity; anisotropy; etc.!. Residual
three-dimensionality is a concern, but taken alone seems in-
sufficient to account for the results. Several different forcing
methods have been used to vary both the spatial and tempo-
ral properties of the velocity field, and the results are robust.
We argue that the localization and intermittency of the

a!Corresponding author. Please use the Haverford postal address or elec-
tronic mail: jgollub@haverford.edu
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strongly straining regions in these two-dimensional flows can
largely account for the early spectral falloff.

In Sec. II, we give the background of the experiment,
including the definitions of the measured quantities. The
methods used to create the magnetically forced flows and to
determine their velocity and concentration fields are given in
Sec. III. The measured statistical properties of these fields
are presented in Sec. IV, followed by a discussion of the
work and its implications in Sec. V.

II. BACKGROUND

A. Definition of spectral functions

We first review the notation and definitions that are
needed to describe the theory and present the experimental
results. The transport of a scalar fieldu(x,t) by a velocity
field u(x,t) is presumed to be governed by the advection-
diffusion equation:

]u

]t
5u–“u5k ¹2u, ~1!

wherek is the diffusivity of the scalar quantity@dimensions
~length!2~time!21#. For passive scalar fields,u is unaffected
by u.

The two-dimensional power spectrumD~k! of the scalar
field is defined as

D~k!5S 2p

a D 2uQ~k!u2, ~2!

whereQ~k! is the Fourier transform of the scalar fieldu~x!,
and a is the size of the field of view. We assume that the
scalar distribution is in a statistical steady state and therefore
time dependence fromD~k!. ~We discuss how we suppress
the time dependence experimentally in Sec. III B and in Ap-
pendix A.! If we assume that the dye distribution is statisti-
cally homogeneous and isotropic,D(k) 5 D(k). It is then
useful to define a further spectral functionEu(k), which is
the circular average of the two-dimensional power spectrum
D~k!, multiplied by a factor 2pk,

Eu~k!52pkD~k!5E
0

2p

D~k,f!k df. ~3!

Then if ^u&x 5 0 ~or is forced to vanish by subtraction in the
analysis! the one-dimensional integral ofEu(k) overk is the
variance of the fluctuations ofu:

^~du!2&x5E
0

`

Eu~k!dk. ~4!

The energy spectrumE(k) gives the spectral distribution
of the velocity fluctuations. IfUn(k) is the Fourier transform
of un(x), where the subscriptn indicates either thex or y
velocity component, thenE(k) ~for two-dimensional turbu-
lence! is given by

E~k!5S 2p

a D 2E
0

2p

uUn~k,f!u2k df. ~5!

We use the energy spectrum only to obtain a wave-number
cutoff. Since the velocity fluctuations are assumed and mea-
sured to be isotropic,E(k) does not depend on which veloc-
ity component is selected.

B. Batchelor’s model (and related theory) on mixing
at high Schmidt number

We review Batchelor’s model1 of scalar mixing at high
Schmidt number in order to state the assumptions clearly.
We consider the special case of two dimensions in Sec. II C.
It is assumed that the turbulence is statistically homoge-
neous, isotropic, and in a steady state. However, a large Rey-
nolds number is believed not to be necessary, as pointed out
originally and as emphasized recently by Holzer and Siggia.7

The wave number range of primary interest lies above
the Kolmogorov wavenumberkK . Over scales in this range
the velocity varies linearly with position for displacements
smaller thankK

21. The momentum diffuses more rapidly than
the scalar, and velocity fluctuations are dissipated at smaller
wave numbers than scalar fluctuations. Batchelor defined a
wave number analogous tokK that we now call kB
5 (e/nk2)1/4 beyond which the diffusion of the scalar pre-
dominates over its advective transport. The wave numbers
k , kB are known as the convective range for the scalar, and
the wave numbersk . kB constitute the diffusive range for

FIG. 1. Two-dimensional mixing apparatus. A thin layer of pure water lies
above a layer of saline solution. Magnets mounted under the cell produce a
spatially periodic magnetic field. Vortices result when a current is passed
through the fluid. Dye and water are pumped slowly into sponges on one
side of the apparatus and are extracted from the other side. The troughs at
either end collect the heavy impurities resulting from the reactions occurring
at the electrodes.~a! Side view.~b! Top view.
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the scalar. Note that the two characteristic wave numbers are
related bykB 5 (Sc)1/2kK .

We focus on the so-called viscous-convective range
~Fig. 1!, kK , k , kB , wheremomentum diffuses, but the sca-
lar is advected. In Batchelor’s model, scalar fluctuations are
steadily injected into the turbulence at a large length scale
L. The velocity field stretches and folds the scalar, creating
components of ever higher wave number in Fourier space,
until the wave numberkB is reached, where the effect of
diffusion becomes significant. Here, the spectral power in a
unit volume of fluid is destroyed at the mean ratex
52k^(“u)2&.

Batchelor noted that the interaction of the scalar with the
velocity field @given by the second term in Eq.~1!# does not
change the total variance. Hence, a steady state is anticipated
where the spectrum@and hence the total power given in Eq.
~4!# is constant in time, but scalar variance is moving past
any wave numberk at ratex. Power is injected atk 5 L21,
transferred from lowk to highk, and dissipated atk 5 kB .

Next, the velocity fieldu(x,t) is modeled for scales in
the viscous-convective range as auniform straining motion
with negligible rotation over the time required to compress
the scalar filaments to the scale 1/kB . Therefore, the princi-
pal rates of strain are considered to be approximately con-
stant in time. Batchelor solved the scalar transport equation
~1!, following the evolution of a typical Fourier component
of u through its interaction withu. Assuming a steady state
and using dimensional analysis to evaluate an overall con-
stant of proportionality, he predicted that the spectrum for
k. kK is

Eu~k!52
x

gk
expS kk2

g D , with g'20.5S e

n D 1/2. ~6!

The parameterg is the mean value for the most negative
principal strain rate, i.e., the principal strain rate responsible
for the compression of filaments of the scalar, ande is the
energy dissipation rate. In the viscous-convective range the
exponential is expected to be approximately unity, so

Eu~k!'2
x

gk
, for kK,k,kB . ~7!

Since the principal rates of strain are not constant over the
entire flow, an average value must be used forg. Batchelor
also pointed out that the time required to establish such a
spectrum is roughly2g21 log(n/k), and hence becomes
long at high Schmidt number. Dimotakis and Miller11 have
discussed the high Schmidt number limit theoretically.

Kraichnan12 later considered the effect of temporal~and
spatial! fluctuations in the rate of strain from its average
value. Fluctuations were found to have little effect on the
spectral shape at lowk, but the diffusive tail fork . kB be-
comes somewhat more gradual than indicated in~6!, and is
expected to be exponential rather than Gaussian. In the pres-
ence of strong intermittency of the strain rate, Kraichnan’s
discussion implies that the spectral shape can be significantly
affected.

C. Mixing in two dimensions

In this work, we study scalar spectra in two-dimensional
turbulence. Although the arguments fork21 scaling were
initially presented in the context of three-dimensional turbu-
lence, they are expected to hold equally well in two dimen-
sions. However, the behavior of the energy spectrumE(k) in
the inertial wave number range differs from the three-
dimensionalk25/3 scaling behavior because of the conserva-
tion of vorticity. The exact dependence is unimportant for
our purposes~and in any case would not apply accurately to
our experiment!. There still exists a cutoff wave number
above which velocity fluctuations are suppressed through
viscous energy dissipation. We refer to viscous cutoff by the
symbol kc and continue to refer to the diffusive cutoff as
kB . The existence of a viscous-convective range for Sc@ 1
does not depend on a particular form forE(k) in the inertial
range, as long as the velocity field consists of a random
straining motion on small scales. With this form for the ve-
locity field u, Batchelor’s conclusion thatEu(k) } k21 for
kc , k , kB is generally assumed to be valid in two dimen-
sions. However, the assumption of a random straining field
may be more difficult to justify when there are coherent
long-lived vortices. On the other hand, Vulpiani13 has argued
that thek21 scaling in two dimensions should be more gen-
eral than in three dimensions, extending to wave numbers in
the inertial range, and applying even for chaotic advection
with few degrees of freedom.

D. Previous experimental and numerical work

1. Experiments

The experimental evidence supporting the existence of a
k21 spectrum has been inconclusive. Gibson and Schwarz2

studied both temperature and salinity (Sc' 700) fluctuations
in water made turbulent by passing it through a grid. The
slope of the scalar spectrum was found to be less negative at
wave numbers above than below the velocity cutoff, and
they concluded that the data were consistent with Batchelor’s
predictions. However, the scatter is large and the scaling
range is limited. Grantet al.3 simultaneously measured tem-
perature and velocity fluctuations in the ocean (Sc' 7). The
scalar spectrum was seen to change fromk25/3 to approxi-
mately k21 in the region of the velocity spectrum cutoff.
This k21 scaling was seen over a decade of wave numbers, a
greater range than one might expect for a Prandtl number of
7. However, Grantet al. thought it likely that the turbulence
was not locally isotropic, as required by the Batchelor
theory. Nye and Brodkey5 mixed dye with water (Sc
' 5000) in pipe turbulence and found a full 1.5 decades of
k21 behavior, starting near the velocity spectrum cutoff,
which was observed to be at about 0.1kK . Gargett

14 mea-
sured temperature and velocity spectra in both isotropic and
anisotropic oceanic turbulence. Batchelor scaling was not
observed for the isotropic case. However, the slope of
logEu(k) was close to21 when the velocity field was an-
isotropic as a result of buoyancy. Gibson later commented on
the important role of intermittency in oceanic
measurements.15
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More recently, Wuet al.6 argued that the thickness fluc-
tuations of a soap film act as a passive scalar under certain
limiting conditions. They used a two-dimensional eccentric
Couette cell to create turbulence (Re' 8000) in a stretched
film. They noted well-definedk21 scaling@though they omit-
ted the phase space factor in~3!, so that their plotted spectra
varied ask22#. The properties of the velocity field were not
measured in this experiment. Since thickness variations exert
an elastic force on the film, the accuracy of the approxima-
tion that thickness fluctuations behave as a passive scalar is
difficult to assess.

Miller and Dimotakis4,16 performed careful experiments
on dye mixing in water (Sc'2000) in a turbulent jet
(12 000,Re,72 000). They gave particular attention to ex-
perimental issues that could affect the data at high wave
numbers. The spectrumEu(k) did not follow a power law,
and was generally steeper thank21 in the ~expected! Batch-
elor regime. They pointed out that some of the previous posi-
tive reports had inadequate spatial resolution or too low a
Schmidt number to make a proper test.

2. Simulations

Holzer and Siggia7 performed two-dimensional numeri-
cal simulations. They solved a stochastically forced Euler
model in Fourier space within a limited band of wavenum-
bers. At high Sc the diffusion of the scalar takes place at
wave numbers beyond the forcing band. To maximize the
range of scales available, hyperdiffusivity was used. The
computations were consistent with Batchelor scaling.

Antonsenet al.used an eikonal-type reduced wave num-
ber description instead of the full transport equation~1! to
simulate the interaction of the velocity field and the scalar in
two dimensions. A Lagrangian chaotic flow was used as the
forcing field. They obtainedk21 scaling both for their re-
duced equations, and for the full advection-diffusion equa-
tion in spectral space, for their chosen forcing field. How-
ever, the results may be relevant primarily to Schmidt
numbers much higher than those that occur in realistic ex-
periments.

Pierrehumbert10 simulated mixing using a two-
dimensional~2-D! chaotic mapping designed to simulate a
large-scale 2-D velocity field. The chaotic mapping alter-
nates with a diffusive smoothing step in this computation.
There were a number of interesting and relevant results:~a!
For a decaying scalar field that is not resupplied, the concen-
tration spectrum at a given time is exponential rather than
algebraic.~b! For steady-state mixing with injection at large
scales, spectra are algebraic, but with anomalously steep ex-
ponents between21 and22. Furthermore, the scalar prob-
ability distribution shows a substantial amount of ‘‘mixed’’
fluid with intensities between the maximal and minimal val-
ues.~c! The power spectra approachk21 only if an excep-
tionally wide scale separation between the viscous and dif-
fusive scales is maintained. These results suggest thatk21

scaling may not be robust in 2-D experiments at physically
realistic Schmidt numbers.

Direct numerical simulations for high Schmidt number
three-dimensional turbulence are difficult to perform because
of the large range of scales relevant to the mixing. This re-

quires that simulations be implemented at very high resolu-
tion, so the computations are demanding. Bogucki, Domar-
adzki, and Yeung8 performed a three-dimensional direct
numerical simulation in spectral space, with Taylor micros-
cale Reynolds numbers of 25, 36, and 77, using resolutions
of 1623, 1623, and 2403, respectively. They observedk21

scaling over more than a decade of wave numbers, even for
relatively low Schmidt numbers Sc53, 5, and 7. Much of
this scaling range was located at wave numbers lower than
the traditional estimates, where the energy spectrum has sub-
stantial power@but the scalar dissipationk2Eu(k) is fairly
small#. An exponential tail consistent with Kraichnan’s form
was found.

III. METHODOLOGY

A. Two-dimensional flow cell

A combination of electromagnetic forcing and density
stratification is used to create a quasi-two-dimensional flow.
The cell, based on a design by Cardoso, Marteau, and
Tabeling,17 is shown in Fig. 1. It is an open rectangular con-
tainer made from Delrin, with a thin~1 mm! glass bottom. A
glass window mounted in the side of the cell permits lateral
visual inspection of the flow. A 3 mmlayer of saline solution
~NaCl and water, 3.2 M! is placed in the cell. A spatially
periodic magnetic field is created by permanent magnets
placed beneath the glass bottom. The flow is driven by pass-
ing a steady current through the saline solution. The mag-
netic field exerts a force on the moving charges perpendicu-
lar to their velocity and the magnetic field. The forcing
current can be either constant or time periodic. In the latter
case, chaotic advection occurs; this allows mixing to be stud-
ied at lower Reynolds numbers and hence higher viscosities.

Several different arrangements of magnets are used in
these experiments. Figure 2~a! shows a regular array yielding
unstable shear zones that evolve to an irregular array of vor-
tices with typical spacing of several cm. As the current is
increased, so does the speed of the flow; the vortices become
unstable and move around the cell erratically. The resulting
nonperiodic flow is a form of weak turbulence; its statistical
properties are discussed in Sec. IV A. Some additional ex-
periments were done with a random magnet array, as shown
in Fig. 2~b!. Both the coordinates and the polarizations were
randomly selected; overlapping coordinate choices were sim-
ply omitted.

To study 2-D mixing, we require a thin moving layer of
fluid within which the velocity field is nearly independent of
depth. To achieve this, we place a 1 mmlayer of fresh water
above the denser~1.15 g/ml! 3 mm layer of saline solution.
Buoyancy forces act to keep the layers separate over the
length of an experimental run, about 10 min. As the upper
layer is not electrically conductive, it is forced only through
contact with the lower layer.

In our investigation the concentration of a fluorescent
dye solution~sodium fluorescein! in pure water serves as the
passive scalar. The diffusivity of the dye18 is
531026 cm2 s21; this yields a Schmidt number Sc'2000.
Fluctuations are introduced by injecting dye solution~con-
centration of 0.0015 M! and pure water into the upper layer
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of the flow through sponges in contact with the surface, as
shown in Fig. 1~b!. Injection takes place sufficiently slowly
so as not to affect the dynamics of the flow. Mixed fluid is
extracted~at an equal rate! from the upper layer on the op-
posite side of the cell. After an initial transient period, a
steady state is achieved. We choose the relative injection
rates of dye and water to yield the best signal-to-noise ratio.

For the flow in the upper layer to be considered two
dimensional, there should be neither vertical velocity com-
ponents nor vertical velocity gradients. Two effects suppress
vertical velocity components. First, the magnets are placed
as close as possible to the lower layer, so that the direction of

B varies only slightly from the vertical throughout the 3 mm
electrolyte layer. The close spacing of magnets ensures rapid
transitions from regions of positive to negativeB. As a con-
sequence, the Lorentz forces produced in the lower layer act
principally in the horizontal plane. Second, the stratification
by density inhibits mass transfer between the two layers.

Vertical velocity gradients in the upper layer are created
when the lower layer accelerates, pulling the upper layer
along. This can have the effect of smearing thin filaments of
dye. We minimized such gradients by keeping the upper
layer as thin as possible. We also performed some experi-
ments with a glycerol–water solution to reduce the vertical
velocity gradients. The adequacy of the two-dimensional ap-
proximation is discussed in Appendix B.

B. Scalar measurement

We measure the concentration of the fluorescent dye by
illuminating the flow with ultraviolet lamps radiating near
365 nm, as shown in Fig. 3. The incident UV intensity is
nearly uniform over the imaged area. The dye concentration
in the imaged area is kept below about 1024 M, where the
intensity is found by a separate calibration test to increase
linearly with concentration to within about 10%. At higher
concentrations, gradual saturation occurs.

Images of a region in the center of the flow~4.8–11 cm
per side, or 6%–26% of the cell! are generally obtained at 5
s intervals~so that they are not strongly correlated!. We use
a 5123512 pixel, variable scan CCD camera in conjunction
with a liquid crystal shutter. The exposure time of each im-
age is adjusted to minimize blurring of the dye without sac-
rificing signal-to-noise ratio. Each CCD array element pro-
duces a voltage proportional to the incident intensity of light.

FIG. 2. Arrays of 1.25 cm diam magnets placed beneath the cell. Black and
white denote the two polarities.~a! Regular array in rows separated by 2.5
cm. ~b! Random arrangement~see the text!.

FIG. 3. Illumination and imaging setup. Illumination of the dye is provided
by four horizontal low intensity UV-emitting tubes~not shown! placed on
either side of the cell and two high-intensity UV lamps mounted overhead.
The concentration field~or particle distribution for velocimetry! is imaged
by the shuttered CCD camera. A side window allows the extent of vertical
mixing to be evaluated.
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The images are acquired by a frame grabber and stored digi-
tally. Each pixel in the image is assigned an eight bit value
according to its intensity. An average frame recorded with
the shutter closed is then subtracted from each flow image to
remove the effect of CCD dark current and fixed pattern
noise. The result of this process is a discretely defined two-
dimensional concentration functionu(xi ,yi ,t i).

To obtain spectra, the mean intensity is first subtracted
from each image. The concentration functionu(k) is multi-
plied by a Hanning window and transformed using standard
fast Fourier transform software. After squaring, the spectra
from a temporal series of images are averaged together. We
then subtract the averaged 2-D spectrum of dark images
~measured separately! from the 2-D signal spectrum. This
removes noise associated with the dark current of the CCD
and amplifier noise. The result is a mean two-dimensional
spectrum of the flow,D(k,f). The one-dimensional spectral
function is then obtained using Eq.~3!. For a full discussion
of the signal processing methods, see Appendix A.

Precise determination of the wave number below which
velocity fluctuations are damped is possible only empirically,
as a large part of the energy is lost through friction with the
bottom of the mixing cell. However, we still expect that
velocity fluctuations are suppressed above a characteristic
cutoff wave numberkc . This wave number is found through
examination of the energy spectrumE(k) for the velocity
field. We use velocity fields obtained through digital particle
image velocimetry~Sec. III C! for this purpose.

We also perform tests to verify the theoretical assump-
tions made about the nature of the mixing and the turbulence.
As explained in Sec. II B, it is usually assumed that the mix-
ing occurs in a steady state, with the total spectral power
remaining constant over time. This can be checked for our
experiments by monitoring the variance^(du)2&x , as it is
equal to the total spectral power@Eq. ~4!#. To this end, the
mean concentration̂u(x,t)&x and the standard deviation of
the scalar field are computed for each image and monitored
over time. Because the entire cell is not imaged, the mean
concentration and standard deviation are expected to vary
somewhat over short time intervals, though without long
term drift.

C. Velocity measurement

In order to characterize the 2-D velocity fieldu of the
flow, we perform separate digital particle image velocimetry
~DPIV! experiments to obtain velocity fields for the flow at
discrete points in time.

The technique for DPIV is fairly standard. For a com-
prehensive treatment see Willert and Gharib.19 We seed the
upper layer with fluorescent polystyrene spheres 120mm in
diameter. Their density is 1.05 g/ml, slightly higher than that
of water. Because the density of the lower saline layer is 1.15
g/ml, the particles reside at the boundary between the two
layers. Images are typically separated by 1/22 s. We obtain
images of 5123512 pixels, and select correlation zones 32
pixels on each side. The zones are overlapped by 75% to
produce a 64364 array of velocity vectors. There would be
16316 fully independent velocity vectors~if not over-
lapped!.

In a typical velocity field containing 4096 vectors, we
find 20–40 erroneous velocity vectors, caused by false peaks
in the correlation function. False peaks are caused when par-
ticle images are truncated by the edges of the correlation
zone, or else leave the zone completely between frames.
These effects are minimized by seeding the particles as
densely as possible, so that most particles stay in the zone
during the intervalDt. Additional errors can occur if par-
ticles clump together or cannot be distinguished from one
another. Any erroneous vectors can be detected by compar-
ing them with their neighbors. If thex or y components of a
velocity vector differ by more than a predetermined thresh-
old value, the vector is removed and replaced by the average
of its good neighbors. This process works best when velocity
field varies slowly in space~compared to the spacing of ve-
locity vectors!. This is the reason why correlation zones are
overlapped to sample the velocity field beyond the range of
its theoretical frequency response.

The spatial frequency response of the DPIV process de-
pends on the size of the correlation zone used to obtain the
vector. Because the process averages the displacements of all
the particles in the zone, the response is that for a box:

R~k!5S sin ckxckx
D S sin ckycky

D , ~8!

wherec is half the size of the correlation zone.
We obtain velocity fields for the same driving current

used during the mixing experiments. Using these fields, the
root mean square speed of the flow is obtained and the Rey-
nolds number estimated. The mean structure of the flow is
obtained by time averaging a series of velocity fields, and the
pattern of fluctuations can then be obtained by subtraction.
We compute the one-dimensional velocity spectrumE(k) as
follows. After applying a Hanning window, thex or y com-
ponent of the velocity field is transformed using a two-
dimensional FFT algorithm. The resulting two-dimensional
power spectrum is then divided by the square of the response
functionR(k) @Eq. ~8!#. The functionE(k) given in Eq.~5!
is then examined for the cutoff in the velocity spectrum.

IV. RESULTS

A. Velocity fields

We performed dye mixing runs for the regular magnet
array shown in Fig. 2~a! ~driven at 80 mA! as well as for the
random magnet arrangement shown in Fig. 2~b! ~driven at
100 mA!. The regular array creates long regions of the like
sign magnetic field in they direction, and thus large shearing
areas at the boundaries between these regions. The resulting
shear flow is unstable and decays to moving vortices. Typi-
cal measured velocity fields are shown in Fig. 4. For the
regular array~Fig. 5! the rms speed is 1.8 cm/s~averaged
over space and time!, with a maximum speed of approxi-
mately 3 cm/s. The diameter of a typical vortex, determined
by the magnet spacing, is 5 cm, so Re>500.

With the random magnet arrangement~Fig. 5! the rms
speed is 1.54 cm/s. The random arrangement results in some
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reduction of speed and in the amount of shearing. As a result,
the flow is slightly more stable. The velocity field also shows
slightly sharper features in this case.

1. Homogeneity and correlation time of the velocity
fluctuations

Time averaging of the velocity field reveals a definite
structure imposed by the magnet array, as shown in Fig. 6.
For the regular array, the mean flow varies with the same
periodicity as the magnet array: 5 cm. The regions of stron-
gest mean flow have speeds slightly over 1 cm/s, about half
the rms fluctuation of the instantaneous flow. The random

array also creates a mean flow, shown in Fig. 6~b!. The stron-
gest regions of mean flow in this case are roughly 1.5 cm/s,
on the same order as the rms speed.

The Batchelor theory requires that in the viscous-
convective range, the velocity field consists of a spatially
homogeneous, random straining motion. The spatial unifor-
mity of the fluctuations can best be judged by examining the
‘‘standard deviation field’’ for the two velocity components.
This field, shown in Fig. 7 for the two arrays, is determined
by plottingat each pointthe local root mean square fluctua-
tion (nx2 n̄x) and similarly forny , where the overbar de-
notes the local time average. The orientation of these vectors

FIG. 4. Velocity fields~48348 vectors! for the flow corresponding to the regular magnet array in Fig. 2~a!. The length~and boldness! of each vector are
proportional to the magnitude of the velocity at each point on the grid. Each field represents an area of 9 cm39 cm; they were obtained at 5 s intervals.
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near 45° simply means that the fluctuations of the two veloc-
ity components are approximately equal in magnitude. The
spatially averaged standard deviation ofny ~0.95 cm/s! is
only slightly less than that ofnx ~1.11 cm/s!. These fluctua-
tions are comparable to the magnitude of the mean flow in its
strongest regions. The random magnet arrangement produces
somewhat smaller fluctuations about its mean flow; the spa-
tial averages of the standard deviation ofnx andny are both
0.7 cm/s in this case.

The fluctuations are also approximately uniform over the
imaged area. The spatial variation of the fluctuations~i.e., the
standard deviation of the standard deviation field! is only
about 0.15 and 0.18 cm/s, respectively, for thex andy com-

ponents for the regular array. The random case is not quite as
homogeneous. To summarize, we find that, although a sig-
nificant mean flow exists,the velocity fluctuations are sub-
stantial, relatively isotropic, and roughly uniform over the
imaged area.

To determine thecorrelation timeof the fluctuations, we
compute the temporal autocorrelation function of the veloc-
ity component fluctuations~with respect to the time-averaged
mean flows of Fig. 6!. This quantity is computed locally and
then averaged over space. The result for the random array,
shown in Fig. 8, reveals a correlation time of about 4 s,
which is comparable to the eddy turnover time.

FIG. 5. Velocity fields corresponding to the random magnet arrangement in Fig. 2~b! for a steady current. The region shown is 10.2310.2 cm.
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2. Velocity spectra: Estimating the energy cutoff

Thek21 scaling regime is dependent on the existence of
a region of wave numberskc,k,kB , where velocity fluc-
tuations have been suppressed by viscosity, but scalar fluc-
tuations have not been dissipated by diffusion. The wave
numberkc is expected to be slightly different for the two
magnet arrangements, as the magnetic field varies on differ-
ent length scales. To determinekc , we present velocity spec-
tra obtained from the DPIV velocity fields in Fig. 9. Al-
though the spectral range ofE(k) is limited, it is clear that

for the regular magnet array the spectral power at
k/2p51 cm21 is smaller by three orders of magnitude than
at k/2p50.2 cm21. This is consistent with direct visual ob-
servations that there are no significant velocity fluctuations
with a wavelength less than 1 cm. Therefore we choose
kc/2p>1 cm21.

The spectra for the random array shown in Fig. 9~b! are

FIG. 6. Time-averaged velocity fields~mean flows! for the regular and
random magnet arrangements.~a! Regular magnet array, averaged over 165
s. A mean flow with a characteristic scale of about 5 cm is present due to the
magnets.~b! Random magnet array, averaged over 270 s.

FIG. 7. Standard deviation fields for the velocity, computed with respect to
the mean flows of Fig. 6. Thex andy components of the vectors indicate the
magnitude of the fluctuations of thex and y velocity components at each
point, computed from a series of velocity fields. The direction of the vectors
has no meaning, aside from giving the relative level ofx andy fluctuations.
~a! Regular magnet array. Fluctuations are uniformly distributed and have an
average absolute magnitude of 1.4 cm/s.~b! Random magnet array. Fluc-
tuations show more structure and have an average magnitude of 1.0 cm/s.
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qualitatively similar to those for the regular array, except that
the cutoff occurs at a slightly higher wave number; we
choosekc/2p>1.5 cm21 for this case. Were we instead to

choose the wave number of maximum energy dissipation as
kc , the estimated viscous-convective regime would begin at
wave numbers lower by a factor of 2 approximately. This
situation is rather different from the usual 3-D case, where
the spectral power varies more gradually nearkK , so that the
viscous-convective regime for the scalar field can begin as
low as 0.1kK .

3. Estimating the Batchelor wave number

We can obtain a simple physical estimate of the other
end of the viscous-convective range, i.e., the location of the
two-dimensional Batchelor wave numberkB , in several dif-
ferent ways. First, we consider the competing effects on a
dye structure due to~a! the stretching produced by the large-
scale flow and~b! the dissipation due to diffusion.18 A dye
structure of initial sizeL0 is stretched once every character-
istic timets . This process produces an exponential decrease
of its characteristic length scale. The resulting length scale is

Ls~ t !5L0e
2t/ts. ~9!

The effect of diffusion is to smooth the dye over a typical
length,

Ld~ t !5A2kt. ~10!

The smallest~and oldest! structures present in the flow, i.e.,
those corresponding to the Batchelor wave number, will be
given by the crossover point whereLd'Ls , as shown in Fig.
10.

We take the stretching timets to be the circulation time
of a large eddy or the measured correlation time, roughly 4 s
for our flow. The dye injection scale isL052.5 cm. The
point of intersection occurs at about 20 s, which gives an
estimate of the age of the oldest striations. At that point,
L(t)'0.014 cm, where

kB
2p

>
1

2LB
'35 cm21. ~11!

FIG. 8. Spatially averaged temporal autocorrelation functions of the velocity
component fluctuations for the random array. The mean flow was first sub-
tracted, and the temporal autocorrelation function computed at each position
prior to spatial averaging.

FIG. 9. One-dimensional velocity spectraE(k) for thex andy components
of velocity for ~a! the regular array and~b! the random arrangement. Spectra
are compensated for the spectral falloff caused by the finite size of the
correlation zone.

FIG. 10. Evolution in time of typical lengths due to stretching and diffusion
are given byLs(t) andLd(t), respectively. The smallest and oldest struc-
tures present in the flow, i.e. those corresponding to the Batchelor wave
number, should be given by the point of crossing.
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It should be noted that this model forkB is fairly insen-
sitive to the characteristic stretching time, the most uncertain
parameter used. Increasingts by a factor of 5 only reduces
the estimatedkB by a factor of 2. We note that this estimate
for kB is roughly consistent with that obtained fromkc for
the regular array according to the relationkB5(Sc)1/2kK .

Alternately, we can estimatekB by measuring the mean
value of the most negative principal strain rateg. To do this,
we have determined the rate of strain tensor on a regular grid
~obtaining the velocity derivatives from our velocity field
measurements!. We then diagonalize this tensor at each lo-
cation and ensemble average over space and time. In this
way, we estimate thatg'1.0 s21. Using Eq.~6! and defining
kB as the wave number for which the exponent is21, we

find that kB570 cm21, a value that is comparable to but
somewhat larger than the estimate given above. Note that the
estimates made in this section do not consider the role of
strong intermittency, which we discuss in Sec. V.

B. Scalar measurements

1. Concentration fields

We present characteristic data from runs with the regular
magnet array and the random magnet arrangement. Water
and dye solution were injected in a ratio of 7.5 parts water to

FIG. 11. Sample images of the concentration field during mixing, for the regular magnet array of Fig. 2~a!. Bright areas correspond to high concentration. An
8 cm36.8 cm region is shown at 5 s intervals.
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1 part dye solution~by volume!. The size of the sponges for
dye and water@Fig. 1~b!# sets the injection scale at about 2.5
cm. Due to the sharp edges of the dye distribution upon
injection, high-frequency components were also present. For
the regular case, the camera imaged a region 4.9 cm square
with a corresponding pixel size of 0.0096 cm. Forty-two im-
ages were captured over a 210 s period. For the random case
the camera was moved farther away to give a pixel size of
0.0200 cm. Fifty-four images were obtained over a 270 s run.
The camera exposure was set to 1/66 s for the first run, and
1/45 s for the second. This exposure time was a compromise
between blurring and the signal to noise level. In the regions
of maximum velocity, the blurring was about three pixels.
This proved not to be a limitation as the signal at correspond-

ing wave numbers was less than the noise level. Many other
runs in addition to those described here were also done.

Sample images of the concentration fields are shown in
Figs. 11 and 12 for the ordered and random magnet arrays.
The patterns reveal the stretching and folding characteristic
of turbulent or chaotic mixing; the vortices in the underlying
velocity field are also evident, but of course the concentra-
tion field reflects the time history of the velocity field. The
thinnest resolvable features in the images are 1 mm or less in
width. However, thinner striations are visible to the eye.

2. Existence of a steady state

The assumption that the distribution of the dye is statis-
tically steady is crucial to the theoretical predictions. Fluc-

FIG. 12. Sample images of the concentration field during mixing, for the random magnet array of Fig. 2~b!. A 10.2310.2 cm region is shown at 5 s intervals.
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tuations injected into the flow mainly at lowk, are trans-
formed to higherk by advection and stretching, and finally
destroyed nearkB . However, the total variance should re-
main constant over time@Eq. ~4!#. The validity of these as-
sumptions for our flow is checked by examining the behavior
of the mean dye concentration and its standard deviation
over time ~Fig. 13!. We average the pixel values in each
frame to obtain the mean concentration of the imaged area.
The lower dataset in each plot is the square root of the spatial
variance of the light intensity as a function of time. Since
only a small portion of the mixing cell is imaged, and the
majority of dye in the cell is outside the camera’s view, these
values are expected to fluctuate somewhat, but without long
term drift. Linear fits approximate the temporal behavior ad-
equately.

We find that the average dye concentration gradually
increases over the course of the run. This indicates that the
concentration is not in a true steady state; there is a buildup
of dye. However, the standard deviation~the lower curves in
Fig. 13! increases only slightly with time. We conclude that

fluctuations are sufficiently steady for a meaningful measure-
ment of steady-state scalar spectra.

3. Concentration spectra

Two-dimensional spectraD~k! from runs using the regu-
lar magnet array and the random arrangement are shown in
Fig. 14. The most noticeable characteristic is the broad peak
centered at the origin ink space. One can replaceD~k! by the
one-dimensional spectral functionEu(k), as in Eq.~3!, with-
out loss of information, ifD~k! is statistically isotropic for
the wave numbers of interest. The contour plots in Figs.
14~b! and 14~d! show that the random forcing case is essen-
tially isotropic, while the concentration fluctuations produced
by the regular array are less so. This is shown quantitatively
in Fig. 15, where the angular dependence of the spectral
power,

g~f!5E
k/2p51

k/2p510

kD~k,f!dk, ~12!

is plotted for 0,f,p. The integral is normalized by the
total spectral power in the expected viscous-convective range
1,k/2p,10 cm21. The total power varies with angle by
roughly a factor of 2 for regular forcing, but the angular
dependence is only marginally detectable for the random ar-
ray. ~With additional ensemble averaging, we believe that
the angular fluctuations would decrease further.!

The form of the spectrum is not significantly dependent
on angle, even for the regular array, though the amplitude
varies somewhat. This fact is demonstrated in Fig. 16, which
shows the radial spectrakD(k,45°), andkD(k,90°), taken
along the angles of greatest relative anisotropy of the spec-
trum shown in Figs. 13~a! and 13~b!. At both angles, the
spectrum is considerably steeper than the Batchelor predic-

FIG. 13. Mean concentration and standard deviation of concentration fluc-
tuations in the imaged area over time for two types of forcing:~a! regular
magnet array and~b! random arrangement. Though the mean concentration
drifts upward, the standard deviation is relatively constant.

FIG. 14. Characteristic two-dimensional logarithmic power spectrum and
contour plot from the run with~a,b! regular magnet array,~c,d! random
magnet arrangement.
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tion in the relevant range of wave numbers above 1 cm21.
The two curves differ mainly in amplitude, not shape, so it is
acceptable to average the concentration spectrum over
angles, even for the regular array.

The one-dimensional spectraEu(k) from both runs are
presented in Fig. 17. They are normalized by^(du)2& so that
the total spectral power is equal to unity. Also shown is the
compensated spectrumkEu(k), which should be flat in the
Batchelor range. A noise floor~see Appendix A! is reached
at approximatelyk/2p'10–20 cm21, well below the Ny-
quist wave numberkN associated with the pixel size.~For the
ordered case,kN/2p525 cm21. For the random case,
kN/2p552 cm21.! Data below 10–20 cm21 should therefore
be ignored.

Nearly a decade of the estimated viscous-convective
range~shown by the arrow! is seen in the concentration spec-
tra in both cases.Note that the uncertainty in the location of
this range is about a factor of 2 in wave number. To examine
the spectra in greater detail, we present the logarithmic
slopes in Fig. 18. Theslopegenerally becomes more nega-

FIG. 15. Angular dependenceg(f) of the spectral power defined in Eq.
~12! for ~a! regular forcing and~b! random forcing. The plots are normalized
to the unit total area. The solid line is a smoothed fit to the data to guide the
eye. The angular dependence is barely detectable for the random case.

FIG. 16. Radial concentration spectrakD(k,f) along 45° and 90° angles,
the directions of greatest relative anisotropy for the spectrum shown in Figs.
13~a! and 13~b!. The linek23 is drawn only for comparison and is not meant
to imply that the function is a power law. The two spectra differ approxi-
mately by a constant factor.

FIG. 17. One-dimensional concentration spectra~normalized by the vari-
ance! for two magnet arrangements:~a! regular and~b! random. Also dis-
played are the compensated spectrakEu(k) that would appear flat fork21

scaling. The estimated viscous-convective range is indicated by an arrow.
The structure for wave numbers greater thank/2p515 cm21 in ~a! and
k/2p510 cm21 in ~b! is obscured by noise.
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tive with increasingk, and no well-defined power law be-
havior is evident. Though regions not too far fromk21 scal-
ing occur for a narrow interval near the velocity cutoffkc ,
no extended interval of this type occurs. Recall that due
to measurement noise, the slope data beyondk/2p5
10–20 cm21 should be ignored. Many other runs~not
shown! are consistent with these results showing an early
cutoff.

4. Scalar probability distribution

Additional insight can be gained from examining the
probability distributionP(du) of the scalar field about its
mean; this quantity is shown for the random array in Fig. 19,
using the original scale of the digitized intensities~0–255!.
We estimate that noise broadens any feature slightly by at
least 6 in the units shown. The asymmetry of the distribution
is due to the fact that more water than dye was injected. The
distribution has a roughly Gaussian central peak with ex-
tended tails. The small peaks in the tails are related to un-
mixed components, which are not very prominent. Thus,
there is quite a lot of mixed fluid.~This is a time average

over the run; the mixed fluid of course builds up during the
run.! The ‘‘unmixedness parameter’’ proposed by Dimotakis
and Miller,11

J[
^~du!2&

^u&~Du2^u&!
, ~13!

is approximately 0.17. Therefore, we are apparently not very
close to the ‘‘binary’’ regime where diffusion is unimportant,
and only the unmixed components determine the statistics.

5. Time-dependent forcing at higher viscosity

We also studied dye mixing in a rather different flow
field produced by a time-periodic~rather than steady! driving
current. In this case a somewhat more viscous glycerol–
water mixture (n53.3 cS) was utilized that does not easily
produce turbulence for steady forcing. The driving current
was applied as a square wave with a period of 4 s.

The resulting concentration patterns are shown in Fig.
20. In this case, there are no stable coherent vortices ad-
vected about the cell. Rather, the patterns are typical of cha-
otic advection induced by periodic modulation~for example,
see Ref. 20!, though the patterns are more irregular than
usual due to the random magnet array. The scalar field is
stretched and folded efficiently, and very thin dye filaments
are visible over a somewhat larger fraction of the flow than
in the cases discussed earlier in the paper. However, there is
evidence of ‘‘KAM surfaces’’ that inhibit mixing; these
bound the darker low concentration regions in Fig. 20. As a
result, not all paths are equally accessible to fluid elements.
An extensive study of the velocity field for this case has not
been performed. We use it mainly to see whether the scalar
spectra are substantially affected by changing the mixing
mechanism. The higher viscosity used in this case also fa-
vors two-dimensionality~by reducing vertical gradients of
horizontal velocity! to some extent.

FIG. 18. Logarithmic slopes of concentration spectra displayed in Fig. 17.
The slope is less than21 and is generally decreasing with increasingk.

FIG. 19. Probability distributionP(du) of the scalar field for the random
array. The units correspond to the eight bit intensity digitization, and are the
same as in Fig. 13~b!. The asymmetry is due to the fact that more water than
dye solution was injected. The small peaks in the tails are related to the
injected unmixed dye soluiton and pure water.
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The one-dimensional power spectrum~Fig. 21! obtained
during these runs shows a steep dependence on wave number
similar to that observed for steady forcing at lower viscosity,
despite the quite different flow. Again, there is no well-
defined scaling law.

5. Variation of injection parameters

It is important to determine whether the form of the con-
centration spectrum is affected by variations of the ‘‘injec-
tion’’ process. For example, it seemed possible that the spec-
tra are dominated by contributions from highly concentrated
dye streamers that emerge directly into the flow from the
injection sponges. Examples of such streamers can be seen in
Fig. 11. To determine whether these streamers are problem-

atic, a baffle was placed between the injection sponges and
the imaged area in some runs, including the one correspond-
ing to the spectrum of Fig. 17~a!. In order to enter the flow,
dyed fluid and pure water were forced to flow around the
edges of the baffle, and thus become more thoroughly mixed
before being imaged. Though the presence of the baffle
seems to have minor effects on the spectra, it does not sub-
stantially affect the steep slope in the major part of the
viscous-convective regime.

Since the probability distribution indicated that a sub-
stantial amount of mixed fluid accumulates during the runs,
we also tried increasing the injection rates by a factor of 3;
this did not produce a significant change in the form of the
scalar spectrum.Reducingthe injection rates by a factor of 5

FIG. 20. Images of the concentration fields for time-periodic forcing with the random magnet array, at higher viscosity. These lack coherent vortices and
resemble chaotic advection~see the text!. A 10.2310.2 cm region is shown at 5 s intervals.
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from the usual conditions also produced little change in the
scalar spectrum. Larger reductions were impractical due to
signal-to-noise considerations.

V. CONCLUSION

A. Summary

We have studied the mixing of a dye in quasi-two-
dimensional turbulence through examination of the time-
averaged spatial power spectrum~Fig. 17! of the dye con-
centration. We are satisfied that several assumptions essential
to the development of the theory of high Schmidt number
mixing hold for this experiment. The velocity field is known
to be stationary, and its fluctuations were measured to be
essentially homogeneous in space and isotropic~Fig. 7!. Al-
though there is a mean flow caused by the forcing~Fig. 6!,
its characteristic length scale is much larger than any of the
relevant scales. The establishment of a steady state for the
scalar variance was confirmed by monitoring the level of
spatial fluctuations over time~Fig. 13!. Some anisotropy in
the dye distribution is present for the regular magnet array,
but there is no detectable angular dependence of the form of
the spectrum~Fig. 16!. The random array yields essentially
isotropic mixing @Fig. 15~b!#. We have considered whether

the injection parameters influence the spectrum, and these
effects appear to be small. Finally, the emitted light intensity
of the dye was found to be proportional to concentration for
the range of concentrations and illumination intensities actu-
ally used.

We find that the logarithmic spectral slope~Fig. 18! is
steeper than21, except possibly nearkc . Furthermore, the
magnitude of the slope increases withk throughout the ac-
cessible range. Including a Gaussian tail as in Eq.~6! does
not resolve the problem; the fit is very poor. On the other
hand, the inclusion of a phenomenological exponential
~rather than Gaussian! diffusive tail does yield a satisfactory
fit, but requires unphysical parameters. For example, fitting
the data shown in Fig. 17~b! to a spectrum of the form

Eu~k!5Ck21 exp~2kAk/ugeffu!, ~14!

yields the result shown in Fig. 22.~Of course, a constant of
order 1 could be inserted in the exponent.! Using the physi-
cal diffusivity, we find that the effective principal strain rate
is ugeffu51.131023 s21, much smaller than themeasured
mean strain rate of about 1 s21. Equivalently, the falloff be-
low k21 scaling occurs at wave numbers lower than expected
by approximately a factor of 30.

B. Interpretation

How then we are to understand the surprising experi-
mental results reported here? The key lies largely in the
strong intermittency of these two-dimensional flows. Semi-
stable vortices can form and move about the cell, remaining
coherent for up to 20 s before being stretched apart. As a
result, fluid elements typically experience long quiescent in-
tervals punctuated by infrequent large straining events. Dur-
ing the quiescent intervals the scalar structure may be dissi-
pated at a lower wave number because of the long time
available for diffusion to act in the absence of stretching and
compression. The chaotic data of Figs. 20, 21 are also af-
fected by intermittency~localized regions of high strain rate!,
though for somewhat different reasons. Though vortices are

FIG. 21. ~a! Normalized one-dimensional concentration spectrumEu(k) and
compensated spectrumkEu(k) for the case of periodic forcing of the ran-
dom magnet array.~b! Logarithmic slope.

FIG. 22. One-dimensional concentration spectrum of Fig. 17~b!, fitted to Eq.
~14! ~solid line!. The inclusion of an exponential tail provides a good fit, but
the resulting effective principal strain rate is lower than expected.
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apparently absent in this case, persistent visible barriers to
transport are present, so that the flow is not statistically ho-
mogeneous.

The effects of intermittency on scalar spectra have been
discussed theoretically.12,15A recent theoretical approach by
Antonsenet al. applicable to chaotic mixing21 predicts that
the effects of intermittency may be fairly dramatic. These
authors describe the spectrum in terms of a superposition of
time-dependent variances associated with Lagrangian fluid
elements in a chaotic two-dimensional flow. If the straining
motion experienced by a typical fluid element is confined to
short bursts separated by long quiescent~nonstretching! in-
tervals of mean lengthT, then their approach predicts that
the cutoff in the scalar spectrum isreducedapproximately by
Ats /T, wherets'g21 is the mean stretching time defined
near Eq.~9!. Kraichnan’s approach would lead to a similar
conclusion: the low strain rate regions, if they predominate
statistically, lead to a cutoff lower in wave number than that
otherwise expected from the high strain rate regions by
roughly the square root of the reduction in strain rate.

We have made preliminary measurements of the prob-
ability distribution of the most negative principal strain rate
g from our velocity fields, as explained in Sec. IV A 3. We
have established that the strain rates accounting for the high-
est and lowest deciles of the distribution differ by a factor of
at least 10, and possibly much more. We cannot make a
more precise statement because differentiating the velocity
fields augments the effect of measurement noise. We find by
numerical tests that a measurement uncertainty of even 2%
in the velocity field is problematic for assessing the width of
the strain rate distribution quantitatively.

Intermittency is probably not be sufficient to entirely ac-
count for the early spectral falloff. However, its effect may
be magnified by a small amount of three-dimensionality.
These effects are discussed in Appendix B, where we point
out that small velocity gradients across the upper layer can
tilt the planes of constant concentration away from the ver-
tical. This effect is overwhelmed where random straining is
large, since planes of constant concentration align normal to
the ~horizontal! axis of greatest compression. On the other
hand, in the low strain rate regions, significant blurring of
sharp structures by about 1–2 mm~somewhat larger than the
smallest resolved scales in the spectra! can occur due to re-
sidual vertical gradients of the horizontal velocity. This ef-
fect, which may contribute to the early spectral falloff, could
be made less important by substantially increasing the sys-
tem size. We note that increasing the viscosity by a factor of
3 as described in Sec. IV B 4, a change that should favor
two-dimensionality, did not change the spectra significantly.

C. Concluding remarks

It is tempting to speculate that intermittency~highly non-
uniform strain rates! may also have played a role in the in-
teresting jet flow measurements of Miller and Dimotakis,4

where spectra systematically steeper thank21 were found.
The specific form of the falloff found in the present work
does not match the lognormal behavior noted by these au-
thors, but this difference is not necessarily a counterargu-

ment since the flows are so different. It would be interesting
to measure the probability distribution of the most negative
principal strain rate for the jet flow, but such measurements
may be impractical. Another possible explanation is that a
remarkably wide separation between the velocity cutoff and
the diffusive cutoff may be needed to obtain convincing
k21 scaling in some situations, as found in Pierrehumbert’s
simulations.10

The early pioneering measurements, for example those
of Gibson and Schwarz2 and Nye and Brodkey,5 contributed
much to the subject but also suffered from limited instrumen-
tal resolution at high wave number. While these experiments
revealed a roughk21 regime ~generally belowkc! over a
limited range of wave numbers, an early instrumental falloff
was observed. Therefore, it was impossible to determine the
actual shape and cutoff wave number of the scalar field in its
dissipative regime. Whether the extent of thek21 range is as
great in these studies as is expected from the theory is un-
known.

Disparate conclusions about scalar spectra in the Batch-
elor regime are prevalent in the literature. This fact probably
reflects a greater sensitivity to flow statistics than is some-
times assumed. The results of the present investigation sug-
gest the importance of intermittency, and the delicacy of ap-
plying the theory to two-dimensional flows at low Reynolds
number. The results also emphasize the difficulty of inter-
preting scalar spectra without extensive diagnostics on the
velocity field. It seems evident that somewhat more than
‘‘random straining’’ is required to produce convincing scal-
ing of the type that Batchelor first discussed for weakly dif-
fusing impurities.
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APPENDIX A: SIGNAL PROCESSING

The dye concentration function we wish to study is
u(x,t). The actual visible radiated light is proportional to the
UV light intensity at each point,I (x). The total signal that
reaches the CCD array isu(x,t)I (x), since we know by a
separate calibration run that the dye response is linear. The
CCD array has a spatially nonuniform responserCCD(x). We
combine the two into a single response functionr (x)
5 I (x)rCCD(x). However, over the range of relevant wave
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numbers, spatial variations of the UV lighting and nonuni-
formities in the CCD sensitivity are expected to be negli-
gible. Therefore we have approximated the response function
r (x) as unity.

The CCD has fixed pattern noise,d(x), which we as-
sume to be constant in time. We also include a random noise
term n(x,t), due to amplifier noise and fluctuations in the
dark current. Therefore the raw received signal,Sraw(x,t), is
given by

Sraw~x,t !5u~x,t !1d~x!1n~x,t !. ~A1!

The fixed pattern noise termd(x) is obtained by taking a
series of pictures with the shutter closed for the same inte-
gration time. These dark images are averaged together and
subtracted from each captured imageSraw(x,t).

Subtracting the fixed pattern noise yields the corrected
concentration function plus a noise term:

s~x,t !5sraw~x,t !2d~x!5u~x,t !1n~x,t !. ~A2!

This signals(x,t) is then Fourier transformed. The effect of
the Fourier transform is to changes(x,t) to S(k,t) and
u(x,t) to Q(k,t). The noise termn(x,t) becomesN(k,t).
We then obtain the power spectrum by taking the complex
square of the transform:

uS~k,t !u25uQ~k,t !u21uN~k,t !u21N~k,t !Q~k,t !*

1Q~k,t !N~k,t !* . ~A3!

The last two terms are the Fourier transforms of the cross-
correlation function betweenn(x,t) andu(x,t). Let us sup-
pose for the moment that the noise and the concentration
distribution are uncorrelated so these terms vanish. The time-
averaged two-dimensional concentration spectrumD~k! can
then be obtained by subtracting the noise spectrum from the
signal spectrum:

D~k!5^uQ~k,t !u2& t5^uS~k,t !u2& t2^uN~k,t !u2& t . ~A4!

This two-dimensional spectrumD~k! can then be used to
obtain the one-dimensional spectral function:

Eu~k!52pkD~k!5E
0

2p

D~k,f!k df. ~A5!

Though the process described here does significantly reduce
the spectral background~mainly by eliminating noise associ-
ated with the dark current and the amplifier!, a noise floor
remains in the spectra of Figs. 15, 18, because of additional
noise~e.g., shot noise! that is correlated with the signal itself.
We believe it is best not to try to remove it.

We have not considered the spatial frequency response
of the CCD array and lens. There is actually some attenua-
tion of striations that are narrower than two or three pixels;
we do not bother to correct for this effect because our spectra
become buried in noise at wave numbers this high.

APPENDIX B: TWO-DIMENSIONALITY OF THE
EXPERIMENTAL FLOW

To study mixing, we create a quasi-two-dimensional
flow using the methods described in Sec. III A. Though two-
dimensionality is not necessary for the Batchelor theory, it is

needed to allow imaging measurements. We require that the
dye mix only within the 1 mm thick upper layer of pure
water, and that the concentration of the dye be uniform over
the depth of the layer.

There are two principal ways two-dimensionality could
be lost. First, diffusion can reduce the density contrast be-
tween the two layers until overturning occurs due to convec-
tive secondary flows in the~lower! forcing layer. The diffu-
sivity of NaCl in water isD51.48431025 cm2 s21. The
characteristic diffusion length in timet is L5ADt. For an
experimental run of 5 min,L50.67 mm, less than the depth
of the upper layer. This estimate indicates that it is reason-
able to expect the upper layer to remain significantly less
dense than the lower layer. The continuous injection of pure
water and dye solution and the extraction of mixed fluid also
maintains the density gradient. The volume of fluid con-
tained in the upper layer is cycled through the cell once
every 4–5 min, roughly the duration of the run. The glass
windows in the side of the mixing cell permit inspection of
the layers of water and dye. It is evident to the eye that the
two layers remain separate for the duration of the run.

A second way that two-dimensionality can be lost is
through the development of vertical gradients of horizontal
velocity in the upper layer. If the dye at the upper and lower
portions of the layer move at different speeds in a direction
perpendicular to isoconcentration planes, thin structures of
dye will become tilted with respect to the vertical, and will
appear to the camera less intense and thicker than they actu-
ally are.

The major source of such velocity gradients is the accel-
eration associated with the rotation of vortices, for the steady
forcing experiments. This effect may be assessed as follows.
Suppose that a vortex of radiusr rotates at angular vel-
ocity v. The pressure difference from the center to outer
edge of the vortex that is needed to sustain this motion
is approximately rv2r 2/2. The fractional head~thick-
ness variation! Dh/h required to provide this pressure differ-
ence isv2/2gh50.01 typically. The timet required for such
small thickness variations to develop is quite short:
t5(2r /v)(Dh/h)'0.05 s. This means that in the steady-
statespinout of fluid is strongly suppressedand that one need
not depend primarily on viscosity to limit vertical gradients
of velocity. However, during thetransientperiods of sudden
acceleration, one can get displacements across the layer of
about nt'0.05 cm, a value sufficiently small not to be a
major concern.

However, small residual pressure variations tend to give
weak secondary flows~outward at the upper edge of a vortex
and inward at its lower edge!. These are hard to estimatea
priori , but their effect on the scalar field is suppressed by the
random straining process described by Batchelor.1 Planes of
constant scalar concentration tend to become aligned along
the axis of greatest strain, with their normals along the direc-
tion of maximum compression. This effect increases the
wave number of dye components during advection. Since the
velocity gradients are much larger in the horizontal direc-
tions, the principal axis of greatest contraction will also be
horizontal. Therefore, planes of constant concentration will
tend to remain vertical. This effect opposes the formation of
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three-dimensional structure in the scalar field.
In regions of the flow where straining motion predomi-

nates, evidence of two-dimensionality is supported by direct
observation of the flow. Dye filaments are observed to be
approximately 0.1 mm wide, much smaller than the depth of
the upper layer; they are aligned vertically. However, inside
the vortices, which can remain coherent for times much
longer than the eddy turnover time, some smearing occurs
over distances of 1–2 mm, somewhat larger than the smallest
scale resolved in the spectrum. Thus, the combination of
intermittency with this weak smearing effect may contribute
to the early spectral falloff.
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