13,414 research outputs found

    Nonperturbative QCD, gauge-fixing, Gribov copies, and the lattice

    Get PDF
    Perturbative QCD uses the Faddeev-Popov gauge-fixing procedure, which leads to ghosts and the local BRST invariance of the gauge-fixed perturbative QCD action. In the asymptotic regime, where perturbative QCD is relevant, Gribov copies can be neglected. In the nonperturbative regime, one must adopt either a nonlocal Gribov-copy free gauge (e.g., Laplacian gauge) or attempt to maintain local BRST invariance at the expense of admitting Gribov copies. These issues are explored. In addition, we discuss the relationship between recent Dyson-Schwinger based model calculations of the infrared behavior of QCD Green's functions and the lattice calculation of these quantities.Comment: 9 pages, 2 figures, to appear in Prog. Theor. Phys. Suppl. in the proceedings of the Tokyo-Adelaide Joint Workshop on Quarks, Astrophysics and Space Physic

    The development of an intelligent interface to a computational fluid dynamics flow-solver code

    Get PDF
    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code

    SOLVING THE BETHE--SALPETER EQUATION IN MINKOWSKI SPACE: SCALAR THEORIES

    Get PDF
    The Bethe-Salpeter (BS) equation for scalar-scalar bound states in scalar theories without derivative coupling is formulated and solved in Minkowski space. This is achieved using the perturbation theory integral representation (PTIR), which allows these amplitudes to be expressed as integrals over weight functions and known singularity structures and hence allows us to convert the BS equation into an integral equation involving weight functions. We obtain numerical solutions using this formalism for a number of scattering kernels to illustrate the generality of the approach. It applies even when the na\"{\i}ve Wick rotation is invalid. As a check we verify, for example, that this method applied to the special case of the massive ladder exchange kernel reproduces the same results as are obtained by Wick rotation.Comment: 8 pages, regular latex, no figures. Entire manuscript available as a ps file at http://www.physics.adelaide.edu.au/theory/home.html Also available via anonymous ftp at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-95-28.T182.p

    Necessary skills and practices required for effective participation in high bandwidth design team activities

    Get PDF
    Technology is continually changing, and evolving, throughout the entire construction industry; and particularly in the design process. One of the principal manifestations of this is a move away from team working in a shared work space to team working in a virtual space, using increasingly sophisticated electronic media. Due to the significant operating differences when working in shared and virtual spaces adjustments to generic skills utilised by members is a necessity when moving between the two conditions. This paper reports an aspect of a CRC-CI research project based on research of ‘generic skills’ used by individuals and teams when engaging with high bandwidth information and communication technologies (ICT). It aligns with the project’s other two aspects of collaboration in virtual environments: ‘processes’ and ‘models’. The entire project focuses on the early stages of a project (i.e. design) in which models for the project are being developed and revised. The paper summarises the first stage of the research project which reviews literature to identify factors of virtual teaming which may affect team member skills. It concludes that design team participants require ‘appropriate skills’ to function efficiently and effectively, and that the introduction of high band-width technologies reinforces the need for skills mapping and measurement

    Dynamics of merging: Post-merger mixing and relaxation of an Illustris galaxy

    Full text link
    During the merger of two galaxies, the resulting system undergoes violent relaxation and seeks stable equilibrium. However, the details of this evolution are not fully understood. Using Illustris simulation, we probe two physically related processes, mixing and relaxation. Though the two are driven by the same dynamics---global time-varying potential for the energy, and torques caused by asymmetries for angular momentum---we measure them differently. We define mixing as the redistribution of energy and angular momentum between particles of the two merging galaxies. We assess the degree of mixing as the difference between the shapes of their N(E)s, and their N(L^2)s. We find that the difference is decreasing with time, indicating mixing. To measure relaxation, we compare N(E) of the newly merged system to N(E) of a theoretical prediction for relaxed collisionless systems, DARKexp, and witness the system becoming more relaxed, in the sense that N(E) approaches DARKexp N(E). Because the dynamics driving mixing and relaxation are the same, the timescale is similar for both. We measure two sequential timescales: a rapid, 1 Gyr phase after the initial merger, during which the difference in N(E) of the two merging halos decreases by ~80%, followed by a slow phase, when the difference decreases by ~50% over ~8.5 Gyrs. This is a direct measurement of the relaxation timescale. Our work also draws attention to the fact that when a galaxy has reached Jeans equilibrium it may not yet have reached a fully relaxed state given by DARKexp, in that it retains information about its past history. This manifests itself most strongly in stars being centrally concentrated. We argue that it is particularly difficult for stars, and other tightly bound particles, to mix because they have less time to be influenced by the fluctuating potential, even across multiple merger events.Comment: accepted for publication in JCA

    Ubiquity of density slope oscillations in the central regions of galaxy and cluster-sized systems

    Full text link
    One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function f(E)f(E), or differential energy distribution N(E)N(E), such as isothermal spheres, King profiles, or DARKexp, a theoretically derived model for relaxed collisionless systems. Systems defined through f(E)f(E) or N(E)N(E) generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at log(r/r2)2\log(r/r_{-2})\lesssim -2, where r2r_{-2} is the largest radius where dlog(ρ)/dlog(r)=2d\log(\rho)/d\log(r)=-2. We show that the shape of their N(E)N(E) can roughly predict the amplitude of oscillations. Class 2 systems which are a product of dynamical evolution, consist of observed and simulated galaxies and clusters, and pure dark matter halos. Oscillations in the density profile slope seem pervasive in the central regions of Class 2 systems. We argue that in these systems, slope oscillations are an indication that a system is not fully relaxed. We show that these oscillations can be reproduced by small modifications to N(E)N(E) of DARKexp. These affect a small fraction of systems' mass and are confined to log(r/r2)0\log(r/r_{-2})\lesssim 0. The size of these modifications serves as a potential diagnostic for quantifying how far a system is from being relaxed.Comment: accepted by the Journal of Cosmology and Astroparticle Physics (JCAP

    Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model

    Get PDF
    We perform a global fit of the extended scalar singlet model with a fermionic dark matter (DM) candidate. Using the most up-to-date results from the Planck\mathit{Planck} measured DM relic density, direct detection limits from the XENON1T (2018) experiment, electroweak precision observables and Higgs searches at colliders, we constrain the 7-dimensional model parameter space. We also find regions in the model parameter space where a successful electroweak baryogenesis (EWBG) can be viable. This allows us to compute the gravitational wave (GW) signals arising from the phase transition, and discuss the potential discovery prospects of the model at current and future GW experiments. Our global fit places a strong upper and\mathit{and} lower limit on the second scalar mass, the fermion DM mass and the scalar-fermion DM coupling. In agreement with previous studies, we find that our model can simultaneously yield a strong first-order phase transition and saturate the observed DM abundance. More importantly, the GW spectra of viable points can often be within reach of future GW experiments such as LISA, DECIGO and BBO.Comment: 42 pages, 10 figures and 2 tables; v2: updated references, submitted to JHEP; v3: corrected typos and updated references, matches version published in JHE

    LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc

    Full text link
    We present LUXCalc, a new utility for calculating likelihoods and deriving WIMP-nucleon coupling limits from the recent results of the LUX direct search dark matter experiment. After a brief review of WIMP-nucleon scattering, we derive LUX limits on the spin-dependent WIMP-nucleon couplings over a broad range of WIMP masses, under standard assumptions on the relevant astrophysical parameters. We find that, under these and other common assumptions, LUX excludes the entire spin-dependent parameter space consistent with a dark matter interpretation of DAMA's anomalous signal, the first time a single experiment has been able to do so. We also revisit the case of spin-independent couplings, and demonstrate good agreement between our results and the published LUX results. Finally, we derive constraints on the parameters of an effective dark matter theory in which a spin-1 mediator interacts with a fermionic WIMP and Standard Model fermions via axial-vector couplings. A detailed appendix describes the use of LUXCalc with standard codes to place constraints on generic dark matter theories.Comment: 16 pages, 6 figures. Software package included as ancillary files. v2: added references, Baksan limits. v3: clarifications and small corrections, results unchange
    corecore