10,152 research outputs found

    Vortex-loop calculation of the specific heat of superfluid ^{4}He under pressure.

    Get PDF
    Vortex-loop renormalization is used to compute the specific heat of superfluid ^{4}He near the lambda point at various pressures up to 26 bars. The input parameters are the pressure dependence of T_{λ} and the superfluid density, which determine the nonuniversal parameters of the vortex core energy and core size. The results for the specific heat are found to be in good agreement with experimental data, matching the expected universal pressure dependence to within about 5%. The nonuniversal critical amplitude of the specific heat is found to be in reasonable agreement, a factor of four larger than the experiments. We point out problems with recent Gross-Pitaevskii simulations that claimed the vortex-loop percolation temperature did not match the critical temperature of the superfluid phase transition

    Memristive excitable cellular automata

    Full text link
    The memristor is a device whose resistance changes depending on the polarity and magnitude of a voltage applied to the device's terminals. We design a minimalistic model of a regular network of memristors using structurally-dynamic cellular automata. Each cell gets info about states of its closest neighbours via incoming links. A link can be one 'conductive' or 'non-conductive' states. States of every link are updated depending on states of cells the link connects. Every cell of a memristive automaton takes three states: resting, excited (analog of positive polarity) and refractory (analog of negative polarity). A cell updates its state depending on states of its closest neighbours which are connected to the cell via 'conductive' links. We study behaviour of memristive automata in response to point-wise and spatially extended perturbations, structure of localised excitations coupled with topological defects, interfacial mobile excitations and growth of information pathways.Comment: Accepted to Int J Bifurcation and Chaos (2011

    Coulomb Oscillations of Indium-doped ZnO Nanowire Transistors in a Magnetic Field

    Full text link
    We report on the observation of Coulomb oscillations from localized quantum dots superimposed on the normal hopping current in ZnO nanowire transistors. The Coulomb oscillations can be resolved up to 20 K. Positive anisotropic magnetoresistance has been observed due to the Lorentz force on the carrier motion. Magnetic field-induced tunneling barrier transparency results in an increase of oscillation amplitude with increasing magnetic field. The energy shift as a function of magnetic field indicates electron wavefunction modification in the quantum dots.Comment: 16 pages, 6 figure

    Dynamics of the forward vortex cascade in two-dimensional quantum turbulence

    Full text link
    The dynamics of the forward vortex cascade in 2D turbulence in a superfluid film is investigated using analytic techniques. The cascade is formed by injecting pairs with the same initial separation (the stirring scale) at a constant rate. They move to smaller scales with constant current under the action of frictional forces, finally reaching the core size separation, where they annihilate and the energy is removed by a thermal bath. On switching off the injection, the pair distribution first decays starting from the initial stirring scale, with the total vortex density decreasing linearly in time at a rate equal to the initial injection rate. As pairs at smaller scales decay, the vortex density then falls off as a power law, the same power law found in recent exact solutions of quenched 2D superfluids.Comment: 5 pages, 5 figures, Proceedings of LT2

    Multi-Gain-Stage InGaAs Avalanche Photodiode with Enhanced Gain and Reduced Excess Noise

    Get PDF
    We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000

    An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects

    Get PDF
    The Sleipner CO2 storage operation has been injecting CO2 since 1996, and the growth of the plume has been intensively monitored using time-lapse seismic techniques. Detailed history-matching of the topmost CO2 layer has proven challenging. This paper summarizes results from a series of flow simulations examining two key parameters affecting CO2 mobility: permeability heterogeneity and fluid temperatures within the plume. The best match to the observed distribution of CO2 was achieved by including high permeability channels in the reservoir flow model, as observed on seismic data. Thermal models suggests that CO2 enters the top sand layer 7 °C warmer than the ambient reservoir. The resulting reduction in the density and viscosity of CO2 does not significantly improve the fit between seismic and simulation
    • …
    corecore