586 research outputs found

    Ancient Portraits of Poets: Communities, Canons, Receptions

    Get PDF
    This thesis examines the ancient sculptural portraits of poets in relation to the literary reception of their works by investigating a range of contexts for, and interactions with, these objects. Contemporary scholarship has found it productive to examine biographical material relating to ancient poets as evidence for early reception. This thesis explores how the ancient portraits of poets take part in the constructions of these authors, and how they are integrated into the reception of ancient poetry. Recent scholarship has cast doubts over the methodologies conventionally used to relate portraits to the biographical reception of their subjects: there are strong arguments that an individualistic character-based approach to these objects can mislead us about how they were perceived in their various ancient contexts. This thesis takes a different approach by considering the archaeological contexts and literary interactions in which we find these objects, from fourth-century BC Athens to sixteenth-century AD Ferrara. I show how, through these contexts and interactions, the sculptural portraits of poets can engage in keys ways with the literary reception of their subjects: Hellenistic communities use portraits to strengthen their connections to prestigious poets; Roman aristocrats use portraits of poets to signal engagement with Greek culture and therefore elite status; poets are positioned within literary histories and canons through programmatic assemblages; later poets focus on portraits in order to explore their relationships to their predecessors; finally, early modern writers present these portraits as offering an engagement with an absent poet that complements reading the poet’s works. These, then, are the three main concerns of this thesis: communities, canons, and receptions. The case studies examined in this thesis show that the portraits of poets have been engaged in literary reception from antiquity to the present, and that they have raised persistent questions about presence and absence in literary encounters

    Avian GIS models signal human risk for West Nile virus in Mississippi

    Get PDF
    BACKGROUND: West Nile virus (WNV) poses a significant health risk for residents of Mississippi. Physicians and state health officials are interested in new and efficient methods for monitoring disease spread and predicting future outbreaks. Geographic Information Systems (GIS) models have the potential to support these efforts. Environmental conditions favorable for mosquito habitat were modeled using GIS to derive WNV risk maps for Mississippi. Variables important to WNV dissemination were selected and classified as static and dynamic. The static variables included road density, stream density, slope, and vegetation. The dynamic variable represented seasonal water budget and was calculated using precipitation and evaporation estimates. Significance tests provided deterministic evidence of variable importance to the models. RESULTS: Several models were developed to estimate WNV risk including a landscape-base model and seasonal climatic sub-models. P-values from t-tests guided variable importance ranking. Variables were ranked and weights assigned as follows: road density (0.4), stream density (0.3), slope (0.2) and vegetation (0.1). This landscape-base model was modified by climatic conditions to assess the importance of climate to WNV risk. Human case data at the zip code level were used to validate modeling results. All models were summarized by zip codes for interpretation and model validation. For all models, estimated risk was higher for zip codes with at least one human case than for zip codes where no human cases were recorded. Overall median measure of risk by zip code indicated that 67% of human cases occurred in the high-risk category. CONCLUSION: Modeling results indicated that dead bird occurrences are correlated with human WNV risk and can facilitate the assessment of environmental variables that contribute to that risk. Each variable's importance in GIS-based risk predictions was assigned deterministically. Our models indicated non-uniform distribution of risk across the state and showed elevated risk in urban and as well as rural areas. Model limitations include resolution of human data, zip code aggregation issues, and quality/availability of vegetation and stream density layers. Our approach verified that WNV risk can be modeled at the state level and can be modified for risk predictions of other vector-borne diseases in varied ecological regions

    Molecular genetic characterization of the Drosophila synaptotagmin family

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2005.Includes bibliographical references.Proper functioning of the nervous system requires fast, spatially-restricted neuron- neuron communication at synapses. Classic physiology studies have demonstrated the importance of calcium in regulating synaptic communication; however the molecular events underlying basic synaptic transmission and plasticity have only recently become the subject of intense investigation in neuroscience. The synaptotagmin family of vesicle proteins has been implicated in calcium- dependent neurotransmitter release, although Synaptotagmin 1 (Syt 1) is the only isoform demonstrated to control synaptic vesicle fusion. We have characterized the six remaining synaptotagmin isoforms encoded in the Drosophila genome, including homologs of mammalian Synaptotagmins 4, 7, 12 and 14. Using immunolocalization and in situ hybridization experiments (Chapter 2), we demonstrate that each isoform has a unique subcellular localization and expression pattern, suggesting only Synaptotagmin 1 functions in synaptic vesicle exocytosis. Consistent with their distinct localizations, overexpression of Synaptotagmin 4 (Syt 4) or Synaptotagmin 7 (Syt 7) cannot functionally substitute for the loss of Syt 1 in synaptic transmission and loss-of-function mutations in Syts 4 and 7 do not have defects in neurotransmitter release (Chapter 4). Rather, Syt 4 and Syt 7 likely function in novel regulated-exocytosis pathways within neurons, distinct from synaptic vesicle cycling. The unique ability of Syt 1, but not other Syt isoforms, to localize to synaptic vesicles prompted us to determine the domains within Syt 1 responsible for its trafficking to synaptic vesicles (Chapter 3). We find the trafficking of Syt 1 is complex, likely requiring several sorting signals present at the N-terminus and in the C2 domains.(cont.) The N-terminus was required for proper targeting to presynaptic terminals, while the C2 domains were essential for internalization at synapses. Furthermore, we demonstrate the C2 domains of Syts 4,7, [alpha] and [beta] can not promote localization to synaptic vesicles, even if mislocalized to presynaptic terminals, further arguing only Syt 1 is present on synaptic vesicles in vivo (Chapter 3). Like Synaptotagmin 1, Syt 4 is ubiquitously present at most, if not all synapses, but localizes to the postsynaptic compartment (Chapter 2). Syt 4 homologs have been identified in all metazoan genomes sequenced to date, suggesting this isoform may mediate an evolutionarily conserved role in postsynaptic vesicle trafficking. To elucidate the function of Syt 4-dependent postsynaptic vesicle trafficking we have generated and analyzed null mutations in syt 4. Although Syt 4 is not required for viability, embryonic neuromuscular junctions in mutant animals show a developmental delay in the formation of varicosities, a reduction in neurotransmitter release, and loss of a particular form of synaptic plasticity following high frequency stimulation, we have termed HFMR (High Frequency-induced Miniature Release). Postsynaptic expression of a syt4 transgene can rescue the presynaptic defects (Chapter 4), indicating Syt 4 mediates a retrograde signaling pathway at synapses. In addition, we demonstrate Syt 4 cycles through the postsynaptic plasma membrane (Chapter 4), suggesting it may regulate secretion of retrograde signals in a manner analogous to Syt 1 regulation of neurotransmitter release, presynaptically. There is mounting evidence in several experimental systems for a regulated form of postsynaptic vesicular trafficking.(cont.) Dendritic release of a number of neuromodulators such as dopamine, ATP, GABA, and neuropeptides has been documented, while postsynaptic vesicles within dendritic spines and shafts have been directly visualized using electron microscopy. Studies in hippocampal culture neurons indicate that long-term labeling with FMI-43 loads dendritic organelles that undergo rapid calcium-triggered exocytosis. The localization and evolutionary conservation of Syt 4 makes it an attractive candidate for mediating a postsynaptic trafficking pathway common to all metazoan synapses. Indeed, localization studies of Syt 4 in mammals have noted the presence of the protein within dendrites and soma, similar to our studies in Drosophila. Utilizing the exceptional genetic tools available to Drosophila, we expect the characterization of Syt 4 and this novel retrograde signaling pathway will lead to new and exciting insights into the role of this protein family in fundamental synapse biology.by William W. Adolfsen.Ph.D

    Designing a Mobile Game to Generate Player Data - Lessons Learned

    Get PDF
    User friendly tools have lowered the costs of high-quality game design to the point where researchers without development experience can release their own games. However, there is no established best-practice as few games have been produced for research purposes. Having developed a mobile game without the guidance of similar projects, we realised the need to share our experience so future researchers have a path to follow. Research into game balancing and system simulation required an experimental case study, which inspired the creation of “RPGLite”, a multiplayer mobile game. In creating RPGLite with no development expertise we learned a series of lessons about effective amateur game development for research purposes. In this paper we reflect on the entire development process and present these lessons

    Intraspecific Variation in Nutritional Composition Affects the Leaf Age Preferences of a Mammalian Herbivore

    Get PDF
    Ecologists have long been interested in how the nutritional composition of leaves changes as they age, and whether this affects herbivore feeding preferences. As a consequence, the literature abounds with reports that younger leaves contain higher concentrations of nitrogen and plant secondary metabolites (PSMs) than do older leaves. Most of these studies, however, base their conclusions on average values that often mean little to herbivores. We examined this issue in the well-studied marsupial-eucalypt system, using Eucalyptus melliodora and captive common brushtail possums (Trichosurus vulpecula) offered branches from individual trees containing both young and mature leaves. Like many plants, the concentrations of N and PSMs differed among individual E. melliodora. Although young leaves were, on average, "better defended" by the PSM sideroxylonal than were mature leaves, some trees produced leaves that were relatively undefended at both ages. In response, possums chose different proportions of young and mature leaves depending on the chemistry of the individual tree. Possums did not always prefer leaves with lower concentrations of sideroxylonal (mature leaves) or those with higher concentrations of available N (young leaves). Instead, the sideroxylonal concentration of young leaves dictated their choice: possums preferred young leaves with low sideroxylonal concentrations, but not with high concentrations. By skewing their feeding toward trees producing young leaves with low concentrations of PSMs, possums may influence plant fitness. Researchers will detect these potentially important interactions only if they are aware that measuring variation among plants discloses more information than do average relationships.The study was supported by funding from the Australian Research Council to KJM (DE120101263)

    A discussion of statistical methods to characterise early growth and its impact on bone mineral content later in childhood

    Get PDF
    Background Many statistical methods are available to model longitudinal growth data and relate derived summary measures to later outcomes. Aim To apply and compare commonly used methods to a realistic scenario including pre- and postnatal data, missing data and confounders. Subjects and methods Data were collected from 753 offspring in the Southampton Women’s Survey with measurements of bone mineral content (BMC) at age 6 years. Ultrasound measures included crown-rump length (11 weeks’ gestation) and femur length (19 and 34 weeks’ gestation); postnatally, infant length (birth, 6 and 12 months) and height (2 and 3 years) were measured. A residual growth model, two-stage multilevel linear spline model, joint multilevel linear spline model, SITAR and a growth mixture model were used to relate growth to 6-year BMC. Results Results from the residual growth, two-stage and joint multilevel linear spline models were most comparable: an increase in length at all ages was positively associated with BMC, the strongest association being with later growth. Both SITAR and the growth mixture model demonstrated that length was positively associated with BMC. Conclusions Similarities and differences in results from a variety of analytic strategies need to be understood in the context of each statistical methodology
    • 

    corecore