49 research outputs found

    Genetic studies of the Macushi and Wapishana Indians

    Full text link
    Blood samples from 509 Macushi (3 villages) and 623 Wapishana (11 villages) of Northern Brasil and Southern Guyana have been analyzed with respect to the phenotype and gene frequencies at the following 12 polymorphic loci: AB0, Kell-Cellano, MNSs, Rh, P, Duffy, Kidd, Diego, Lewis, Group-specific component, and the immunoglobulin allotypes of the Gm and Inv systems. The data suggest that 5–6% of the Wapishana gene pool is derived from non-Indians but only 1–2% of the Macushi. Inter- and intratribal genetic distances between villages are calculated for these data in an effort to understand gene flow between the tribes and to account for the unusual distribution of a newly-discovered genetic polymorphism of erythrocyte esterase A thus far limited to these 2 tribes (Neel et al., 1977). The data are puzzling and consistent with the possibility that both the Craib-speaking Macushi and the Arawak-speaking Wapishana have derived the esterase A allele in question from some third group now extinct or thus far undiscovered. Intertribal genetic distances based on gene frequencies at 6 loci are derived for 20 Amerindian tribes (including these 2); the β€œcentral” position of these 2 tribes can in part be explained by the active migration matrix connecting them.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47606/1/439_2004_Article_BF00393584.pd

    Genetic studies of the Macushi and Wapishana Indians

    Full text link
    Blood samples from 509 Macushi and 623 Wapishana Amerindians of Northern Brazil and Southern Guyana have been analyzed with reference to the occurrence of rare variants and genetic polymorphisms of the following 25 systems: (i) Erythrocyte enzymes : acid phosphatase-1, adenosine deaminase, adenylate kinase-k, carbonic anhydrase-1, carbonic anhydrase-2, esterase A 1,2,3, esterase D, galactose-1-phosphate uridyltransferase, isocitrate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, nucleoside phosphorylase, peptidase A, peptidase B, phosphoglucomutase 1, phosphoglucomutase 2, phosphogluconate dehydrogenase, phosphohexoseisomerase, triosephosphate isomerase and (ii) Serum proteins : albumin, ceruloplasmin, haptoglobin, hemoglobin A, hemoglobin A 2 and transferrin. Fifteen different rare variants were detected, involving 11 of these systems. In addition, a previously undescribed variant of ESA 1,2,3 which achieves polymorphic proportions in both these tribes is described. Excluding this variant, the frequency of rare variants is 1.1/1000 in 12510 determinations in the Macushi and 4.7/1000 in 15 396 determinations in the Wapishana. The ESA 1,2,3 , polymorphism was not observed in 382 Makiritare, 232 Yanomama, 146 Piaroa, 404 Cayapo, 190 Kraho and 112 Moro. Irregularities in the intratribal distribution of this polymorphism in the Macushi and Wapishana render a decision as to the tribe of origin impossible at present. Gene frequencies are also given for previosly described polymorphisms of 5 systems: haptoglobin, phosphoglucomutase 1, erythrocyte acid phosphatase, esterase D, and galactose-1-phosphate-uridyl-transferase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47605/1/439_2004_Article_BF00390440.pd

    Association and Mutation Analyses of 16p11.2 Autism Candidate Genes

    Get PDF
    Autism is a complex childhood neurodevelopmental disorder with a strong genetic basis. Microdeletion or duplication of a approximately 500-700-kb genomic rearrangement on 16p11.2 that contains 24 genes represents the second most frequent chromosomal disorder associated with autism. The role of common and rare 16p11.2 sequence variants in autism etiology is unknown.To identify common 16p11.2 variants with a potential role in autism, we performed association studies using existing data generated from three microarray platforms: Affymetrix 5.0 (777 families), Illumina 550 K (943 families), and Affymetrix 500 K (60 families). No common variants were identified that were significantly associated with autism. To look for rare variants, we performed resequencing of coding and promoter regions for eight candidate genes selected based on their known expression patterns and functions. In total, we identified 26 novel variants in autism: 13 exonic (nine non-synonymous, three synonymous, and one untranslated region) and 13 promoter variants. We found a significant association between autism and a coding variant in the seizure-related gene SEZ6L2 (12/1106 autism vs. 3/1161 controls; p = 0.018). Sez6l2 expression in mouse embryos was restricted to the spinal cord and brain. SEZ6L2 expression in human fetal brain was highest in post-mitotic cortical layers, hippocampus, amygdala, and thalamus. Association analysis of SEZ6L2 in an independent sample set failed to replicate our initial findings.We have identified sequence variation in at least one candidate gene in 16p11.2 that may represent a novel genetic risk factor for autism. However, further studies are required to substantiate these preliminary findings

    Widespread Translocation from Autosomes to Sex Chromosomes Preserves Genetic Variability in an Endangered Lark

    Get PDF
    Species that pass repeatedly through narrow population bottlenecks (<100 individuals) are likely to have lost a large proportion of their genetic variation. Having genotyped 92 Raso larks Alauda razae, a Critically Endangered single-island endemic whose world population in the Cape Verdes over the last 100Β years has fluctuated between about 15 and 130 pairs, we found variation at 7 of 21 microsatellite loci that successfully amplified, the remaining loci being monomorphic. At 6 of the polymorphic loci variation was sex-linked, despite the fact that these microsatellites were not sex-linked in the other passerine birds where they were developed. Comparative analysis strongly suggests that material from several different autosomes has been recently transferred to the sex chromosomes in larks. Sex-linkage might plausibly allow some level of heterozygosity to be maintained, even in the face of persistently small population sizes

    Concordant Gene Expression in Leukemia Cells and Normal Leukocytes Is Associated with Germline cis-SNPs

    Get PDF
    The degree to which gene expression covaries between different primary tissues within an individual is not well defined. We hypothesized that expression that is concordant across tissues is more likely influenced by genetic variability than gene expression which is discordant between tissues. We quantified expression of 11,873 genes in paired samples of primary leukemia cells and normal leukocytes from 92 patients with acute lymphoblastic leukemia (ALL). Genetic variation at >500,000 single nucleotide polymorphisms (SNPs) was also assessed. The expression of only 176/11,783 (1.5%) genes was correlated (p<0.008, FDRβ€Š=β€Š25%) in the two tissue types, but expression of a high proportion (20 of these 176 genes) was significantly related to cis-SNP genotypes (adjusted p<0.05). In an independent set of 134 patients with ALL, 14 of these 20 genes were validated as having expression related to cis-SNPs, as were 9 of 20 genes in a second validation set of HapMap cell lines. Genes whose expression was concordant among tissue types were more likely to be associated with germline cis-SNPs than genes with discordant expression in these tissues; genes affected were involved in housekeeping functions (GSTM2, GAPDH and NCOR1) and purine metabolism

    Transcriptome Profiling of Whole Blood Cells Identifies PLEK2 and C1QB in Human Melanoma

    Get PDF
    Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgeneβ„’ tube and NuGEN Ovationβ„’ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV) and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(-) and CD45(+) populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(-) subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients for residual disease

    Analytical methods for inferring functional effects of single base pair substitutions in human cancers

    Get PDF
    Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence

    Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle

    Get PDF
    In genome wide association studies (GWAS), haplotype analyses of SNP data are neglected in favour of single point analysis of associations. In a recent GWAS, we found that none of the known candidate genes for intramuscular fat (IMF) had been identified. In this study, data from the GWAS for these candidate genes were re-analysed as haplotypes. First, we confirmed that the methodology would find evidence for association between haplotypes in candidate genes of the calpain-calpastatin complex and musculus longissimus lumborum peak force (LLPF), because these genes had been confirmed through single point analysis in the GWAS. Then, for intramuscular fat percent (IMF), we found significant partial haplotype substitution effects for the genes ADIPOQ and CXCR4, as well as suggestive associations to the genes CEBPA, FASN, and CAPN1. Haplotypes for these genes explained 80% more of the phenotypic variance compared to the best single SNP. For some genes the analyses suggested that there was more than one causative mutation in some genes, or confirmed that some causative mutations are limited to particular subgroups of a species. Fitting the SNPs and their interactions simultaneously explained a similar amount of the phenotypic variance compared to haplotype analyses. Haplotype analysis is a neglected part of the suite of tools used to analyse GWAS data, would be a useful method to extract more information from these data sets, and may contribute to reducing the missing heritability problem
    corecore