47 research outputs found

    Differential effect of human ivermectin treatment on blood feeding <i>Anopheles gambiae</i> and <i>Culex quinquefasciatus</i>

    Get PDF
    BACKGROUND: Widespread and large scale use of ivermectin in humans and domestic animals can have unexpected effects on non-target organisms. As a search for a possible explanation for an observed longitudinal decline in density of anopheline vector mosquitoes, but not in Culex quinquefasciatus, in an area of north-eastern Tanzania which has been exposed to ivermectin mass drug administration, this study assessed and compared the effect of human ivermectin treatment on blood feeding Anopheles gambiae and Cx. quinquefasciatus. METHODS: Consenting adult volunteers were randomized into two groups to receive either ivermectin or placebo. Twenty four hours after treatment, one volunteer from each group was concurrently exposed to 50 laboratory reared An. gambiae on one arm and 50 laboratory reared Cx. quinquefasciatus on the other arm for 15–30 minutes. Engorged mosquitoes were maintained on 10% glucose solution for 12 days and observed for survival and fecundity. The experiment was repeated 15 times. RESULTS: Two days after the blood meals, nearly half (average 47.7% for the 15 experiments) of the blood fed An. gambiae in the ivermectin group had died while almost all in the placebo group were alive (97.2%), and the difference in survival between these two groups continued to widen on the following days. There was no clear effect of ivermectin on Cx. quinquefasciatus, which had high survival in both ivermectin and placebo group on day 2 (95.7% and 98.4%, respectively) as well as on the following days. Ivermectin completely inhibited egg laying in An. gambiae, while egg laying and subsequent development of immature stages appeared normal in the other three groups. CONCLUSION: Blood meals taken on ivermectin treated volunteers significantly reduced survival and halted fecundity of An. gambiae but had only limited or no effect on Cx. quinquefasciatus. The result suggests that widespread use of ivermectin may have contributed to the observed decline in density of An. gambiae, without similar decrease in Cx. quinquefasciatus, in north-eastern Tanzania

    Increased tolerance of Anopheles gambiae s.s. to chemical insecticides after exposure to agrochemical mixture

    Get PDF
    Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to insecticide-based vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis. The objective of this study was to investigate the effect of exposure of the malaria mosquito, Anopheles gambiae s.s. larvae for 72h to sub-lethal concentrations of the agrochemical mixture (pesticides, herbicides and fungicides). Their subsequent tolerances were measured to deltamethrin (pyrethroid), DDT (organochlorine) and bendiocarb (carbamate) currently used for vector control. The mean LC50 was determined and tolerance ratios for larvae exposed to agrochemical comparatively with unexposed larvae were calculated and expressed as fold increased tolerance. Bioassays revealed a significant increase in larval tolerance to detamethrin (1.83-2.86 fold), DDT (1.31-1.53 fold) and bendiocarb (1.14-1.19 fold) following exposure to 0.1 µM and 1µM agrochemical mixture. The observed increased tolerance in this study is likely to be based on metabolic resistance mechanisms. Overall, this study reveals the potential of agrochemicals to increase the tolerance of mosquito larvae to chemical insecticides

    Insecticide susceptibility status of human biting mosquitoes in Muheza, Tanzania

    Get PDF
    Background: There has been a rapid emergence in insecticide resistance among mosquito population to commonly used public health insecticides. This situation presents a challenge to chemicals that are currently used to control mosquitoes in sub-Saharan African. Furthermore, there is limited information on insecticide susceptibility status of human-biting mosquitoes in some areas of Tanzania. This study aimed to determine insecticide susceptibility status of human biting mosquitoes in a rural area of north-eastern Tanzania.Methods: The study was conducted in two villages in Muheza district, Tanzania. Insecticide susceptibility bioassays were performed according to the World Health Organization standard operating procedures on two to five-day old human biting mosquitoes. The mosquitoes of each species were exposed to four classes of insecticides commonly used for malaria vector control. Mosquito mortality rates (%) were determined after 24 hours post insecticide exposure.Results: Mosquito species tested were Anopheles gambiae s.l., An. funestus, Aedes aegypti, and Culex quinquefasciatus species. Real-time PCR have showed that the main sibling species of An. gambiae complex and An. funestus group were An. gambiae s. s. (58.2%) and An. funestus s. s. (91.1%), respectively. All mosquitoes, except Ae. aegypti formosus were susceptible to pirimiphos-methyl (0.25%). An. gambiae s. l. was found to be resistant to permethrin (0.75%) but showed possibility of resistance to DDT (4%) and bendiocarb (0.1%). Our findings have shown that, An. funestus was fully susceptible to all insecticide tested.Conclusion: The present study has revealed different levels of insecticide susceptibility status to four classes of commonly used insecticides in the most common mosquito vectors of human diseases in north-eastern Tanzania. The findings of the present study call for integrated vector control interventions.

    Sibling species of the <i>Anopheles funestus</i> group, and their infection with malaria and lymphatic filarial parasites, in archived and newly collected specimens from northeastern Tanzania

    Get PDF
    BACKGROUND: Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important vectors of both malaria and lymphatic filariasis. METHODS: Archived (from 2005–2012) and newly collected (from 2014) specimens of the An. funestus group collected indoors using CDC light traps in villages in northeastern Tanzania were analysed. They were identified to sibling species by PCR based on amplification of species-specific nucleotide sequence in the ITS2 region on rDNA genes. The specimens were furthermore examined for infection with Plasmodium falciparum and Wuchereria bancrofti by PCR. RESULTS: The identified sibling species were An. funestus s.s., Anopheles parensis, Anopheles rivulorum, and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005–2007 to those from 2008–2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species composition were minor. No P. falciparum was detected in archived specimens, while 8.3% of the newly collected An. funestus s.s. were positive for this parasite. The overall W. bancrofti infection rate decreased from 14.8% in the 2005–2007 archived specimens to only 0.5% in the newly collected specimens, and with overall 93.3% of infections being in An. funestus s.s. CONCLUSION: The study indicated that the composition of the An. funestus group had remained rather stable during the study period, with An. funestus s.s. being the most predominant. The study also showed increasing P. falciparum infection and decreasing W. bancrofti infection in An. funestus s.s. in the study period, most likely reflecting infection levels with these parasites in the human population in the area

    Lymphatic filariasis control in Tanga Region, Tanzania:status after eight rounds of mass drug administration

    Get PDF
    BackgroundLymphatic filariasis (LF) control started in Tanga Region of Tanzania in 2004, with annual ivermectin/albendazole mass drug administration (MDA). Since then, the current project has monitored the effect in communities and schools in rural areas of Tanga District. In 2013, after 8 rounds of MDA, spot check surveys were added in the other 7 districts of Tanga Region, to assess the regional LF status.MethodsLF vector and transmission surveillance, and human cross sectional surveys in communities and schools, continued in Tanga District as previously reported. In each of the other 7 districts, 2Âż3 spot check sites were selected and about 200 schoolchildren were examined for circulating filarial antigens (CFA). At 1Âż2 of the sites in each district, additional about 200 community volunteers were examined for CFA and chronic LF disease, and the CFA positives were re-examined for microfilariae (mf).ResultsThe downward trend in LF transmission and human infection previously reported for Tanga District continued, with prevalences after MDA 8 reaching 15.5% and 3.5% for CFA and mf in communities (decrease by 75.5% and 89.6% from baseline) and 2.3% for CFA in schoolchildren (decrease by 90.9% from baseline). Surprisingly, the prevalence of chronic LF morbidity after MDA 8 was less than half of baseline records. No infective vector mosquitoes were detected after MDA 7. Spot checks in the other districts after MDA 8 showed relatively high LF burdens in the coastal districts. LF burdens gradually decreased when moving to districts further inland and with higher altitudes.ConclusionLF was still widespread in many parts of Tanga Region after MDA 8, in particular in the coastal areas. This calls for intensified control, which should include increased MDA treatment coverage, strengthening of bed net usage, and more male focus in LF health information dissemination. The low LF burdens observed in some inland districts suggest that MDA in these could be stepped down to provide more resources for upscale of control in the coastal areas. Monitoring should continue to guide the programme to ensure that the current major achievements will ultimately lead to successful LF elimination

    Integrating reproductive and child health and HIV services in Tanzania: Implication to policy, systems and services

    Get PDF
    In Tanzania, reproductive health and HIV services are coordinated by the Ministry of Health and Social Welfare in two separate units namely Reproductive and Child Health Section and the National AIDS Control Programme. The importance of integrating the two services that are vertically run is expected to improve access to and uptake of key essential services and extend coverage to underserved and vulnerable populations and thus minimizing missed opportunities. Experts around the world recognize the central role of Sexual and Reproductive Health (SRH) services in preventing HIV infection. Evidence suggests that improving access to contraception for women to prevent pregnancy is an important and cost-effective way to prevent HIV-positive births. Integrating SRH and HIV services therefore verifies its importance for improving maternal and child health as well as leading to prevention of HIV infection.  The primary objective of this review was to gain an understanding of the current linkages between SRH and HIV within Tanzania’s policies, programmes, systems and services. Policy documents, guidelines, national laws, and published reports on SRH and HIV were reviewed.  The majority of the reviewed documents mentioned fundamentals of integration between SRH and HIV. Majority of policies and guidelines both in family planning (FP) and HIV documents mandate bi-directional linkages. This review suggests that there are linkages between the two services and can be operationalised together. However, policies and guidelines only specify services to be integrated without due consideration of resources and structural orientation for linked services

    Resting behaviour of Anopheles gambiae s.l. and its implication on malaria transmission in Uyui District, western Tanzania

    Get PDF
    An entomological survey to determine resting behaviour and species composition of malaria vectors was carried out in Uyui District in western Tanzania in May 2009. Mosquitoes were collected using indoor resting catch, window exit trap and outdoor &ldquo;bed-net&rdquo; techniques. They mosquitoes were identified using morphological key and polymerase chain reaction (PCR). A total of 672 Anopheles gambiae sensu lato were collected. Of these, 661 (98.4%) were collected outdoor whereas few (1.6%) were collected indoor. The exit trap catch: mechanical aspirator catch ratio was 1:1.75. The overall indoor resting density of An. gambiae s.l. as determined by mechanical aspirator and exit trap was 0.7 and 0.5 mosquitoes per room, respectively. The overall density of the host-seeking as determined by bed net trap outdoor was 44.1 mosquitoes per person. A sample of 44 specimens taken randomly from morphologically identified An.gambiae s.l. population was further analyzed to species level using PCR techniques. Of these 44 specimens 26 (59%) and 18 (41%) were Anopheles arabiensis and Anopheles gambiae sensu stricto respectively. This study contributes to the understanding of the distribution of malaria vectors with respect to species composition and their resting behaviour that could contribute to vector control operations in western Tanzania. A longitudinal study considering dry and wet seasons is recommended to provide more information on the seasonal distribution, abundance and biting behaviour of malaria vectors in the study area

    Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance

    Get PDF
    In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anopheles funestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium &nbsp;falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 geo-referenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Only 32.2% and 8.4% of the data sets reported on sporozoite analysis and entomological inoculation rate (EIR), respectively which highlights the paucity of such important information in the country. Studies demonstrated efficacy of all four major classes of insecticides against malaria vectors in Tanzania with focal points showing phenotypic resistance. About 95% of malaria entomological data was obtained from north- eastern Tanzania. This shows the disproportionate nature of the available information with the western part of the country having none. Therefore it is important for the country to establish entomological surveillance system with state of the art to capture all vitally important entomological indices including vector bionomics in areas of Tanzania where very few or no studies have been done. This is vital in planning and implementing evidence based malaria vector control programmes as well as in monitoring the current malaria control interventions

    Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.

    Get PDF
    BACKGROUND: Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. METHODS: Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. RESULTS: A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. CONCLUSIONS: Both East African and Ifakara huts performed in a similar way although Ifakara huts allowed more mosquitoes to enter, increasing data power. The work convincingly demonstrates that the East African huts and Ifakara huts collect substantially more mosquitoes than the West African huts

    Evaluation of ICON Maxx, a long-lasting treatment kit for mosquito nets: experimental hut trials against anopheline mosquitoes in Tanzania.

    Get PDF
    BACKGROUND: Insecticide-treated nets are the primary method of preventing malaria. To remain effective, the pyrethroid insecticide must withstand multiple washes over the lifetime of the net. ICON(®) Maxx is a 'dip-it-yourself' kit for long-lasting treatment of polyester nets. The twin-sachet kit contains a slow-release capsule suspension of lambda-cyhalothrin plus binding agent. To determine whether ICON Maxx meets the standards required by the World Health Organization Pesticide Evaluation Scheme (WHOPES), the efficacy and wash fastness of ICON Maxx was evaluated against wild, free-flying anopheline mosquitoes. METHODS: ICON Maxx was subjected to bioassay evaluation and experimental hut trial against pyrethroid-susceptible Anopheles gambiae, Anopheles arabiensis and Anopheles funestus. Mosquito mortality, blood feeding inhibition and personal protection were compared between untreated nets, conventional lambda-cyhalothrin treated nets (CTN) washed either four times (cut-off threshold) or 20 times, and ICON Maxx-treated nets either unwashed or washed 20 times. RESULTS: In bioassay, ICON Maxx demonstrated superior wash resistance to the CTN. In the experimental hut trial, ICON Maxx killed 75 % of An. funestus, 71 % of An. gambiae and 47 % of An. arabiensis when unwashed and 58, 66 and 42 %, respectively, when 20 times washed. The CTN killed 52 % of An. funestus, 33 % of An. gambiae and 30 % of An. arabiensis when washed to the cut-off threshold of four washes and 40, 40 and 36 %, respectively, when 20 times washed. Percentage mortality with ICON Maxx 20 times washed was similar (An. funestus) or significantly higher (An. gambiae, An. arabiensis) than with CTN washed to the WHOPES cut-off threshold. Blood-feeding inhibition with ICON Maxx 20 times washed was similar to the CTN washed to cut-off for all three species. Personal protection was significantly higher with ICON Maxx 20 times washed (66-79 %) than with CTN washed to cut-off (48-60 %). CONCLUSIONS: Nets treated with ICON Maxx and washed 20 times met the approval criteria set by WHOPES for Phase II trials in terms of mortality and blood-feeding inhibition. This finding raises the prospect of conventional polyester nets and other materials being made long-lastingly insecticidal through simple dipping in community or home, and thus represents a major advance over conventional pyrethroid treatments
    corecore