234 research outputs found
Kepler Mission Stellar and Instrument Noise Properties Revisited
An earlier study of the Kepler Mission noise properties on time scales of
primary relevance to detection of exoplanet transits found that higher than
expected noise followed to a large extent from the stars, rather than
instrument or data analysis performance. The earlier study over the first six
quarters of Kepler data is extended to the full four years ultimately
comprising the mission. Efforts to improve the pipeline data analysis have been
successful in reducing noise levels modestly as evidenced by smaller values
derived from the current data products. The new analyses of noise properties on
transit time scales show significant changes in the component attributed to
instrument and data analysis, with essentially no change in the inferred
stellar noise. We also extend the analyses to time scales of several days,
instead of several hours to better sample stellar noise that follows from
magnetic activity. On the longer time scale there is a shift in stellar noise
for solar-type stars to smaller values in comparison to solar values.Comment: 10 pages, 8 figures, accepted by A
Kepler Mission Stellar and Instrument Noise Properties
Kepler Mission results are rapidly contributing to fundamentally new
discoveries in both the exoplanet and asteroseismology fields. The data
returned from Kepler are unique in terms of the number of stars observed,
precision of photometry for time series observations, and the temporal extent
of high duty cycle observations. As the first mission to provide extensive time
series measurements on thousands of stars over months to years at a level
hitherto possible only for the Sun, the results from Kepler will vastly
increase our knowledge of stellar variability for quiet solar-type stars. Here
we report on the stellar noise inferred on the timescale of a few hours of most
interest for detection of exoplanets via transits. By design the data from
moderately bright Kepler stars are expected to have roughly comparable levels
of noise intrinsic to the stars and arising from a combination of fundamental
limitations such as Poisson statistics and any instrument noise. The noise
levels attained by Kepler on-orbit exceed by some 50% the target levels for
solar-type, quiet stars. We provide a decomposition of observed noise for an
ensemble of 12th magnitude stars arising from fundamental terms (Poisson and
readout noise), added noise due to the instrument and that intrinsic to the
stars. The largest factor in the modestly higher than anticipated noise follows
from intrinsic stellar noise. We show that using stellar parameters from
galactic stellar synthesis models, and projections to stellar rotation,
activity and hence noise levels reproduces the primary intrinsic stellar noise
features.Comment: Accepted by ApJ; 26 pages, 20 figure
The Kepler Pixel Response Function
Kepler seeks to detect sequences of transits of Earth-size exoplanets
orbiting Solar-like stars. Such transit signals are on the order of 100 ppm.
The high photometric precision demanded by Kepler requires detailed knowledge
of how the Kepler pixels respond to starlight during a nominal observation.
This information is provided by the Kepler pixel response function (PRF),
defined as the composite of Kepler's optical point spread function, integrated
spacecraft pointing jitter during a nominal cadence and other systematic
effects. To provide sub-pixel resolution, the PRF is represented as a
piecewise-continuous polynomial on a sub-pixel mesh. This continuous
representation allows the prediction of a star's flux value on any pixel given
the star's pixel position. The advantages and difficulties of this polynomial
representation are discussed, including characterization of spatial variation
in the PRF and the smoothing of discontinuities between sub-pixel polynomial
patches. On-orbit super-resolution measurements of the PRF across the Kepler
field of view are described. Two uses of the PRF are presented: the selection
of pixels for each star that maximizes the photometric signal to noise ratio
for that star, and PRF-fitted centroids which provide robust and accurate
stellar positions on the CCD, primarily used for attitude and plate scale
tracking. Good knowledge of the PRF has been a critical component for the
successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for
publication
Photometric Variability in Kepler Target Stars: The Sun Among Stars -- A First Look
The Kepler mission provides an exciting opportunity to study the lightcurves
of stars with unprecedented precision and continuity of coverage. This is the
first look at a large sample of stars with photometric data of a quality that
has heretofore been only available for our Sun. It provides the first
opportunity to compare the irradiance variations of our Sun to a large cohort
of stars ranging from vary similar to rather different stellar properties, at a
wide variety of ages. Although Kepler data is in an early phase of maturity,
and we only analyze the first month of coverage, it is sufficient to garner the
first meaningful measurements of our Sun's variability in the context of a
large cohort of main sequence stars in the solar neighborhood. We find that
nearly half of the full sample is more active than the active Sun, although
most of them are not more than twice as active. The active fraction is closer
to a third for the stars most similar to the Sun, and rises to well more than
half for stars cooler than mid K spectral types.Comment: 13 pages, 4 figures, accepted to ApJ Letter
Recommended from our members
Kepler-4B: A Hot Neptune-Like Planet of A G0 Star Near Main-Sequence Turnoff
Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19(h)02(m)27.(s)68, delta = +50 degrees 08'08 '' 7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10(-3) and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3(-1.9)(+1.1) m s(-1), consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223(-0.091)(+0.053) M(circle dot) and 1.487(-0.084)(+0.071) R(circle dot).We estimate the planet mass and radius to be {M(P), R(P)} = {24.5 +/- 3.8 M(circle plus), 3.99 +/- 0.21 R(circle plus)}. The planet's density is near 1.9 g cm(-3); it is thus slightly denser and more massive than Neptune, but about the same size.W. M. Keck FoundationNASA's Science Mission DirectorateAstronom
Kepler Observations of Transiting Hot Compact Objects
Kepler photometry has revealed two unusual transiting companions orbiting an
early A-star and a late B-star. In both cases the occultation of the companion
is deeper than the transit. The occultation and transit with follow-up optical
spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a
companion in a 5.2 day orbit with a radius of 0.08 Rsun and a 10000 K late
B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a
radius of 0.2 Rsun. We infer a temperature of 12250 K for KOI-74b and 13500 K
for KOI-81b.
We present 43 days of high duty cycle, 30 minute cadence photometry, with
models demonstrating the intriguing properties of these object, and speculate
on their nature.Comment: 12 pages, 3 figures, submitted to ApJL (updated to correct KOI74
lightcurve
A Cross-Cultural Perspective on Obesity and Health in Three Groups of Women: The Mississippi Choctaw, American Samoans, and African Americans
This study compares obesity as assessed by Body Mass Index (BMI) and the relationship of BMI to hypertension and
diabetes in adult females from three populations, the Mississippi Band of Choctaw (N=50), American Samoa (N=155),
and an African American community in West Alabama (N=367). These groups were surveyed in the early to mid 1990s.
All three groups of women have very high levels of overweight and obesity, with the Samoans being most extreme in this
regard. While there are indications that all three groups of women consume a calorically dense diet, low activity appears
to be the most likely causal factor in the high rates of obesity. Relaxed negative attitudes toward an overweight/obese body
image may also play a role in the high rates. The prevalences of hypertension and diabetes are alarmingly high in all
three groups. There are, however, very different associations between BMI, hypertension, and diabetes in the three groups
of women. The Samoans are substantially more obese (and older), but they have lower rates of hypertension than the African
American women and lower rates of diabetes than the Choctaw women. While the genetic background of the three
groups no doubt plays a role, it is also likely that a BMI of 30+, the common cutoff for obesity, means different things in
these different populations. These results provide further support for the idea of variation in the relationship of BMI to
disease in different populations
Low False-Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations
(Abridged) NASA's Kepler mission has provided several thousand transiting
planet candidates, yet only a small subset have been confirmed as true planets.
Therefore, the most fundamental question about these candidates is the fraction
of bona fide planets. Estimating the rate of false positives of the overall
Kepler sample is necessary to derive the planet occurrence rate. We present the
results from two large observational campaigns that were conducted with the
Spitzer telescope during the the Kepler mission. These observations are
dedicated to estimating the false positive rate (FPR) amongst the Kepler
candidates. We select a sub-sample of 51 candidates, spanning wide ranges in
stellar, orbital and planetary parameter space, and we observe their transits
with Spitzer at 4.5 microns. We use these observations to measures the
candidate's transit depths and infrared magnitudes. A bandpass-dependent depth
alerts us to the potential presence of a blending star that could be the source
of the observed eclipse: a false-positive scenario. For most of the candidates
(85%), the transit depths measured with Kepler are consistent with the depths
measured with Spitzer as expected for planetary objects, while we find that the
most discrepant measurements are due to the presence of unresolved stars that
dilute the photometry. The Spitzer constraints on their own yield FPRs between
5-40%, depending on the KOIs. By considering the population of the Kepler field
stars, and by combining follow-up observations (imaging) when available, we
find that the overall FPR of our sample is low. The measured upper limit on the
FPR of our sample is 8.8% at a confidence level of 3 sigma. This observational
result, which uses the achromatic property of planetary transit signals that is
not investigated by the Kepler observations, provides an independent indication
that Kepler's false positive rate is low.Comment: 33 pages, 16 figures, 3 tables; accepted for publication in ApJ on
February 7, 201
- …