44 research outputs found

    On the Failure of Fixed-Point Theorems for Chain-complete Lattices in the Effective Topos

    Full text link
    In the effective topos there exists a chain-complete distributive lattice with a monotone and progressive endomap which does not have a fixed point. Consequently, the Bourbaki-Witt theorem and Tarski's fixed-point theorem for chain-complete lattices do not have constructive (topos-valid) proofs

    Homotopy nilpotent groups

    Full text link
    We study the connection between the Goodwillie tower of the identity and the lower central series of the loop group on connected spaces. We define the simplicial theory of homotopy n-nilpotent groups. This notion interpolates between infinite loop spaces and loop spaces. We prove that the set-valued algebraic theory obtained by applying π0\pi_0 is the theory of ordinary n-nilpotent groups and that the Goodwillie tower of a connected space is determined by a certain homotopy left Kan extension. We prove that n-excisive functors of the form ΩF\Omega F have values in homotopy n-nilpotent groups.Comment: 16 pages, uses xy-pic, improved exposition, submitte

    Correlating matched-filter model for analysis and optimisation of neural networks

    Get PDF
    A new formalism is described for modelling neural networks by means of which a clear physical understanding of the network behaviour can be gained. In essence, the neural net is represented by an equivalent network of matched filters which is then analysed by standard correlation techniques. The procedure is demonstrated on the synchronous Little-Hopfield network. It is shown how the ability of this network to discriminate between stored binary, bipolar codes is optimised if the stored codes are chosen to be orthogonal. However, such a choice will not often be possible and so a new neural network architecture is proposed which enables the same discrimination to be obtained for arbitrary stored codes. The most efficient convergence of the synchronous Little-Hopfield net is obtained when the neurons are connected to themselves with a weight equal to the number of stored codes. The processing gain is presented for this case. The paper goes on to show how this modelling technique can be extended to analyse the behaviour of both hard and soft neural threshold responses and a novel time-dependent threshold response is described

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    The fundamental pro-groupoid of an affine 2-scheme

    Full text link
    A natural question in the theory of Tannakian categories is: What if you don't remember \Forget? Working over an arbitrary commutative ring RR, we prove that an answer to this question is given by the functor represented by the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable absolute Galois group of RR when it is a field. This gives a new definition for \'etale \pi_1(\spec(R)) in terms of the category of RR-modules rather than the category of \'etale covers. More generally, we introduce a new notion of "commutative 2-ring" that includes both Grothendieck topoi and symmetric monoidal categories of modules, and define a notion of π1\pi_1 for the corresponding "affine 2-schemes." These results help to simplify and clarify some of the peculiarities of the \'etale fundamental group. For example, \'etale fundamental groups are not "true" groups but only profinite groups, and one cannot hope to recover more: the "Tannakian" functor represented by the \'etale fundamental group of a scheme preserves finite products but not all products.Comment: 46 pages + bibliography. Diagrams drawn in Tik

    Formalizing of Category Theory in Agda

    Full text link
    The generality and pervasiness of category theory in modern mathematics makes it a frequent and useful target of formalization. It is however quite challenging to formalize, for a variety of reasons. Agda currently (i.e. in 2020) does not have a standard, working formalization of category theory. We document our work on solving this dilemma. The formalization revealed a number of potential design choices, and we present, motivate and explain the ones we picked. In particular, we find that alternative definitions or alternative proofs from those found in standard textbooks can be advantageous, as well as "fit" Agda's type theory more smoothly. Some definitions regarded as equivalent in standard textbooks turn out to make different "universe level" assumptions, with some being more polymorphic than others. We also pay close attention to engineering issues so that the library integrates well with Agda's own standard library, as well as being compatible with as many of supported type theories in Agda as possible

    Quantitative Concept Analysis

    Get PDF
    Formal Concept Analysis (FCA) begins from a context, given as a binary relation between some objects and some attributes, and derives a lattice of concepts, where each concept is given as a set of objects and a set of attributes, such that the first set consists of all objects that satisfy all attributes in the second, and vice versa. Many applications, though, provide contexts with quantitative information, telling not just whether an object satisfies an attribute, but also quantifying this satisfaction. Contexts in this form arise as rating matrices in recommender systems, as occurrence matrices in text analysis, as pixel intensity matrices in digital image processing, etc. Such applications have attracted a lot of attention, and several numeric extensions of FCA have been proposed. We propose the framework of proximity sets (proxets), which subsume partially ordered sets (posets) as well as metric spaces. One feature of this approach is that it extracts from quantified contexts quantified concepts, and thus allows full use of the available information. Another feature is that the categorical approach allows analyzing any universal properties that the classical FCA and the new versions may have, and thus provides structural guidance for aligning and combining the approaches.Comment: 16 pages, 3 figures, ICFCA 201

    Categorial Compositionality III: F-(co)algebras and the Systematicity of Recursive Capacities in Human Cognition

    Get PDF
    Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language

    Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition

    Get PDF
    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe—replaced by the relationships between the maps that transform them
    corecore