We study the connection between the Goodwillie tower of the identity and the
lower central series of the loop group on connected spaces. We define the
simplicial theory of homotopy n-nilpotent groups. This notion interpolates
between infinite loop spaces and loop spaces. We prove that the set-valued
algebraic theory obtained by applying π0 is the theory of ordinary
n-nilpotent groups and that the Goodwillie tower of a connected space is
determined by a certain homotopy left Kan extension. We prove that n-excisive
functors of the form ΩF have values in homotopy n-nilpotent groups.Comment: 16 pages, uses xy-pic, improved exposition, submitte