204 research outputs found

    Cadherin structure: a revealing zipper

    Get PDF
    AbstractThe crystal structure of the N-terminal domain of neural cadherin provides the first atomic-level picture of interacting cell-adhesion molecules, and suggests a mechanism for assembly and disassembly of intercellular adhesion zones

    Mechano-transduction: from molecules to tissues.

    Get PDF
    External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function

    Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin

    Get PDF
    Abstractβ-catenin is essential for cadherin-based cell adhesion and Wnt/Wingless growth factor signaling. In these roles, it binds to cadherins, Tcf-family transcription factors, and the tumor suppressor gene product Adenomatous Polyposis Coli (APC). A core region of β-catenin, composed of 12 copies of a 42 amino acid sequence motif known as an armadillo repeat, mediates these interactions. The three-dimensional structure of a protease-resistant fragment of β-catenin containing the armadillo repeat region has been determined. The 12 repeats form a superhelix of helices that features a long, positively charged groove. Although unrelated in sequence, the β-catenin binding regions of cadherins, Tcfs, and APC are acidic and are proposed to interact with this groove

    Crystal Structure of the Hexamerization Domain of N-ethylmaleimide–Sensitive Fusion Protein

    Get PDF
    AbstractN-ethylmaleimide–sensitive fusion protein (NSF) is a cytosolic ATPase required for many intracellular vesicle fusion reactions. NSF consists of an amino-terminal region that interacts with other components of the vesicle trafficking machinery, followed by two homologous ATP-binding cassettes, designated D1 and D2, that possess essential ATPase and hexamerization activities, respectively. The crystal structure of D2 bound to Mg2PLUSPUSSIGN-AMPPNP has been determined at 1.75 Å resolution. The structure consists of a nucleotide-binding and a helical domain, and it is unexpectedly similar to the first two domains of the clamp-loading subunit δ′ of E. coli DNA polymerase III. The structure suggests several regions responsible for coupling of ATP hydrolysis to structural changes in full-length NSF

    X-ray structure determination at low resolution

    Get PDF
    Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible

    Structural Studies of Wnts and Identification of an LRP6 Binding Site

    Get PDF
    SummaryWnts are secreted growth factors that have critical roles in cell fate determination and stem cell renewal. The Wnt/β-catenin pathway is initiated by binding of a Wnt protein to a Frizzled (Fzd) receptor and a coreceptor, LDL receptor-related protein 5 or 6 (LRP5/6). We report the 2.1 Å resolution crystal structure of a Drosophila WntD fragment encompassing the N-terminal domain and the linker that connects it to the C-terminal domain. Differences in the structures of WntD and Xenopus Wnt8, including the positions of a receptor-binding β hairpin and a large solvent-filled cavity in the helical core, indicate conformational plasticity in the N-terminal domain that may be important for Wnt-Frizzled specificity. Structure-based mutational analysis of mouse Wnt3a shows that the linker between the N- and C-terminal domains is required for LRP6 binding. These findings provide important insights into Wnt function and evolution

    Reevaluating αE-catenin monomer and homodimer functions by characterizing E-cadherin/αE-catenin chimeras

    Get PDF
    As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion

    Focal adhesion kinase contributes to proliferative potential of ErbB2 mammary tumour cells but is dispensable for ErbB2 mammary tumour induction in vivo

    Get PDF
    INTRODUCTION: Activation of focal adhesion kinase (FAK) is hypothesized to play an important role in the pathogenesis of human breast cancer. METHODS: To directly evaluate the role of FAK in mammary tumour progression, we have used a conditional FAK mouse model and mouse mammary tumour virus (MMTV)-driven Cre recombinase strain to inactivate FAK in the mammary epithelium of a transgenic mouse model of ErbB2 breast cancer. RESULTS: Although mammary epithelial disruption of FAK in this model resulted in both a delay in onset and a decrease in the number of neoplastic lesions, mammary tumours occurred in 100% of virgin female mice. All of the tumours and derived metastases that developed were proficient for FAK due to the absence of Cre recombinase expression. The hyperplastic epithelia where Cre-mediated recombination of FAK could be detected exhibited a profound proliferative defect. Consistent with these observations, disruption of FAK in established tumour cells resulted in reduced tumour growth that was associated with impaired proliferation. To avoid the selection for FAK-proficient ErbB2 tumour epithelia through escape of Cre-mediated recombination, we next intercrossed the FAK conditional mice with a separate MMTV-driven ErbB2 strain that co-expressed ErbB2 and Cre recombinase on the same transcriptional unit. CONCLUSIONS: While a delay in tumour induction was noted, FAK-deficient tumours arose in 100% of female animals indicating that FAK is dispensable for ErbB2 tumour initiation. In addition, the FAK-null ErbB2 tumours retained their metastatic potential. We further demonstrated that the FAK-related Pyk2 kinase is still expressed in these tumours and is associated with its downstream regulator p130Cas. These observations indicate that Pyk2 can functionally substitute for FAK in ErbB2 mammary tumour progression
    • …
    corecore