9 research outputs found

    Anomalistic Disturbance Torques during the Entry Phase of the Mars Exploration Rover Missions: A Telemetry and Mars-Surface Investigation

    Get PDF
    Shortly after landing on Mars, post-flight analysis of the "Spirit" entry data suggested that the vehicle experienced large, anomalistic oscillations in angle-of-attack starting at about M=6. Similar analysis for "Opportunity " found even larger oscillations starting immediately after maximum dynamic pressure at M=14. Where angles-of-attack of 1-2 degrees were expected from maximum dynamic pressure to drogue deployment, the reconstructions suggested 4 to 9 degrees. The next Mars lander, 2007 Phoenix project, was concerned enough to recommend further exploration of the anomalies. Detailed analysis of "Opportunity" data found significant anomalies in the hypersonic aerodynamic torques. The analysis showed that these torques were essentially fixed in the spinning vehicle. Nearly a year after landing, the "Oportunity" rover took pictures of its aeroshell on the surface, which showed that portions of the aeroshell thermal blanket assembly still remained. This blanket assembly was supposed to burn off very early in the entry. An analysis of the aeroshell photographs led to an estimate of the aerodynamic torques that the remnants could have produced. A comparison of two estimates of the aerodynamic torque perturbations (one extracted from telemetry data and the other from Mars surface photographs) showed exceptional agreement. Trajectory simulations using a simple data derived torque perturbation model provided rigid body motions similar to that observed during the "Opportunity" entry. Therefore, the case of the anomalistic attitude behavior for the "Opportunity" EDL is now considered closed and a suggestion is put forth that a similar event occurred for the "Spirit" entry as well

    Decoy Receptor CXCR7 Modulates Adrenomedullin-Mediated Cardiac and Lymphatic Vascular Development

    Get PDF
    Atypical 7-transmembrane receptors, often called decoy receptors, act promiscuously as molecular sinks to regulate ligand bioavailability and consequently temper the signaling of canonical G protein-coupled receptor (GPCR) pathways. Loss of mammalian CXCR7, the most recently described decoy receptor, results in postnatal lethality due to aberrant cardiac development and myocyte hyperplasia. Here, we provide the molecular underpinning for this proliferative phenotype by demonstrating that the dosage and signaling of adrenomedullin (Adm = gene, AM = protein)—a mitogenic peptide-hormone required for normal cardiovascular development—is tightly controlled by CXCR7. To this end, Cxcr7−/− mice exhibit gain-of-function cardiac and lymphatic vascular phenotypes which can be reversed upon genetic depletion of adrenomedullin ligand. In addition to identifying a biological ligand accountable for the phenotypes of Cxcr7−/− mice, these results reveal a previously underappreciated role for decoy receptors as molecular rheostats in controlling the timing and extent of GPCR-mediated cardiac and vascular development

    Stardust Sample Return Capsule Design Experience

    No full text

    Mars Exploration Rover Heatshield Observation Campaign

    No full text
    For the first time ever, engineers were able to observe a heatshield on the surface of another planet after a successful entry through the atmosphere. A three-week heatshield observation campaign was conducted in December 2004 after the Mars Exploration Rover Opportunity exited "Endurance Crater." By utilizing the rover's scientific instruments, data was collected to make a qualitative assessment of the performance of the heatshield. This data was gathered to gain a better understanding of how the heatshield performed during entry through the Martian atmosphere. In addition, this unprecedented look at the heatshield offered engineers the opportunity to assess if any unexpected anomalies occurred. Once a survey of the heatshield debris was completed, multiple targets of interest were chosen for the collection of imaging data. This data was then used to assess the char depth of the thermal protection material, which compared well with design and post-flight computational predictions. Extensive imaging data was collected and showed the main seal in pristine conditions, and no observable indications of structure overheating. Additionally, unexpected vehicle dynamics during the atmospheric entry were explained by the observation of thermal blanket remnants attached to the heatshield
    corecore