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Summary

Atypical 7-transmembrane receptors, often called decoy receptors, act promiscuously as molecular

sinks to regulate ligand bioavailability and consequently temper the signaling of canonical G

protein-coupled receptor (GPCR) pathways. Loss of mammalian CXCR7, the most recently

described decoy receptor, results in postnatal lethality due to aberrant cardiac development and

myocyte hyperplasia. Here, we provide the molecular underpinning for this proliferative

phenotype by demonstrating that the dosage and signaling of adrenomedullin (Adm = gene, AM =

protein)—a mitogenic peptide-hormone required for normal cardiovascular development—is

tightly controlled by CXCR7. To this end, Cxcr7−/− mice exhibit gain-of-function cardiac and

lymphatic vascular phenotypes which can be reversed upon genetic depletion of adrenomedullin

ligand. In addition to identifying a biological ligand accountable for the phenotypes of Cxcr7−/−

mice, these results reveal a previously underappreciated role for decoy receptors as molecular

rheostats in controlling the timing and extent of GPCR-mediated cardiac and vascular

development.

Introduction

The precise spatiotemporal dosage of mitogenic and chemotactic factors is critical for the

proper organization and development of organ systems. While the concentration of ligands

often differs between tissues and developmental stages, the bioavailability of ligands within
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local microenvironments must also be controlled at a cellular level. Thus, cells can express

molecular sink receptors, which in an autocrine or paracrine manner, sequester ligand away

from canonical signaling receptors, thereby driving important developmental processes like

neurogenesis, angiogenesis, chemotaxis and cellular proliferation (Graham et al., 2012;

Nibbs and Graham, 2013). Molecular sink receptors include atypical chemokine receptors,

also known as decoy receptors, which belong to the larger family of 7-transmembrane

receptors. Decoy receptors act as molecular sinks by binding, internalizing, and degrading a

wide range of ligands independent of G-protein coupling (Graham, 2012). CXCR7 is the

most recently described decoy receptor and has been extensively studied for its role as a

CXCL12/SDF-1 receptor (Boldajipour et al., 2008; Naumann et al., 2010; Thelen and

Thelen, 2008), particularly in tumor cell migration and cancer progression (Duda et al.,

2011; Sanchez-Martin et al., 2013).

However, prominent roles for CXCR7 during normal development and physiology have also

been recently appreciated. In zebrafish, the expression and molecular sink functions of

CXCR7 in trailing cells of the posterior lateral line primordium allows for a CXCL12

chemotactic gradient to be established and sensed by the leading primoridal germ cells

which express CXCR4, the canonical SDF-1/CXCL12 receptor (Dambly-Chaudiere et al.,

2007; Dona et al., 2013; Valentin et al., 2007; Venkiteswaran et al., 2013). In this instance,

CXCR7 exerts its decoy activities over a wide region to help coordinate and guide the

migration of multicellular tissue structures.

However, the decoy activities of CXCR7 can also occur in a cell-autonomous fashion. For

example, the co-expression of CXCR7 within migrating cortical neurons allows for the

continued sensitization and chemotactic signaling of CXCR4--rather than receptor

desensitization and downregulation that would typically occur within an environment of

high CXCL12 ligand (Sanchez-Alcaniz et al., 2011; Wang et al., 2011). Recently, CXCR7

expression in endothelial cells has also been shown to regulate circulating levels of ligands,

suggesting that CXCR7 expression in vessels may not only affect signaling events in a

microenvironment, but systemically as well (Berahovich et al., 2014).

Due to these well-described roles in the CXCL12/CXCR4 signaling axis, Cxcr7−/− mice

were expected to exhibit phenotypes that might resemble gain-of-function mutations for the

CXCL12/CXCR4 signaling axis. However, Cxcr7−/− mice have unexpected phenotypes

including cardiomyocyte hyperplasia and postnatal lethality associated with gross cardiac

enlargement and cardiac valve defects (Gerrits et al., 2008; Sierro et al., 2007; Yu et al.,

2011). Because decoy receptors typically bind and sequester multiple ligands, it has been

difficult to discern which ligand may be causally related to the developmental cardiac

defects of Cxcr7−/− mice. In this regard, we appreciated that CXCR7 was originally

identified as RDC1--a putative receptor for adrenomedullin (Adm = gene, AM = protein), a

52 amino acid mitogenic peptide hormone critical for cardiac and lymphatic vascular

development (Caron and Smithies, 2001; Dackor et al., 2006; Dunworth et al., 2008; Fritz-

Six et al., 2008). AM binds RDC1/CXCR7 with a Kd of 1.9 ×10−7 M, similar to CLR when

associated with RAMPs (Kapas and Clark, 1995). Importantly, we have recently shown that

genetic overexpression of AM ligand in Admhi/hi mice results in gross cardiac enlargement
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due to cardiac hyperplasia during embryogenesis (Wetzel-Strong et al., 2013), which closely

phenocopies the dysmorphic cardiac hyperplasia of Cxcr7−/− mice.

We therefore sought to address whether a principal function of CXCR7 may involve

controlling the dosage of AM ligand during development, first focusing our attention on the

cardiac hyperplasia. In the course of our studies, we also discovered lymphatic vascular

defects in Cxcr7−/− mice, which are consistent with the prominent role that AM signaling

plays in driving normal lymphangiogenesis (Dunworth et al., 2008; Fritz-Six et al., 2008;

Hoopes et al., 2012; Karpinich et al., 2011). In addition to identifying a biological ligand

that is causally associated with the Cxcr7−/− phenotypes, the results described here elucidate

a role for decoy receptors as molecular rheostats that control normal cardiac and lymphatic

vascular development.

Results

Gene expression of Cxcr7 and Adm are coupled in the heart and lymphatic endothelium

Historical ligand binding data (Kapas and Clark, 1995) and more recent findings showing a

down-regulation of Adm gene expression in Cxcr7−/− mice (Sierro et al., 2007), strongly

support the existence of this ligand-receptor pair. Considering the well-established function

of CXCR7 as a decoy receptor, we predicted that expression levels of Cxcr7 may

homeostatically increase under conditions of increased AM peptide. To further evaluate

whether this interaction exists, we measured the expression of Cxcr7 in hearts of Admhi/hi

mice which have a genetically engineered, 3-fold increase in Adm gene expression (Wetzel-

Strong et al., 2013). Indeed, utilizing qRT-PCR, we identified a potent 2.5-fold upregulation

of Cxcr7 gene expression in Admhi/hi cardiac tissue compared to that of wildtype littermates

(Figure 1A). Conversely, loss of Adm expression in isolated endothelial cells resulted in a

nearly 5-fold reduction in Cxcr7 expression (Figure 1A).

We also found that Cxcr7 is expressed at high levels in isolated, adult lymphatic vessels—a

tissue where AM peptide plays important roles (Figure S1A). Consistently, microarray

analysis of cultured, human lymphatic endothelial cells (LECs) showed that expression of

the human CXCR7 gene (aka ACKR3 or CMKOR1) was one of the ten most significantly

induced genes within 1 hour of 10nM AM treatment (p=2.5E-07) (Figure 1B and Table
S1). This finding was further confirmed by qRT-PCR, revealing a 4-fold increase in CXCR7

gene expression following 1- and 24- hours of AM treatment (Figure 1C). Pretreatment

with AM22-52, a CLR/R2 antagonist, significantly reduced this AM-mediated increase

(Figure 1C), demonstrating that the upregulation of CXCR7 gene expression is modulated

through the canonical AM receptor. Collectively, these data indicate that CXCR7 and ADM

gene expression levels are coupled within tissues where AM peptide plays important

developmental and physiological roles. Since excess AM, either by genetic overexpression

in vivo or exogenous treatment in vitro, triggered an increase in CXCR7 expression, we next

tested directly the hypothesis that CXCR7 serves as a decoy receptor to modify AM

concentration.
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CXCR7 scavenges AM peptide and dampens canonical AM signaling

Using a classical scavenger assay, CXCR7-expressing HEK293T cells were treated with

biotinylated-AM1-52, and aliquots of media were collected over time to determine the

remaining levels of AM peptide within the media. While the levels of biotinylated-AM1-52

in the media of vector-transfected control cells remained unchanged, CXCR7-expressing

cells rapidly and steadily depleted AM peptide from the media to levels that were

statistically lower than control cells by the conclusion of the time course (Figure 1D, E).

These data demonstrate the ability of CXCR7 to modulate AM ligand concentrations

exogenously in a controlled in vitro system.

To determine whether this scavenging of AM peptide by CXCR7 was conserved in vivo, we

compared AM staining in cardiac tissue of wildtype mice and Cxcr7−/− mice, which harbor

an insertional GFP reporter within the targeted allele. Firstly, we noted that expression of the

GFP reporter was enriched within the epicardium and the endocardium surrounding the

trabeculae and weakly expressed in the compact zone (Figure 1F). Secondly, the staining

pattern of receptor expression was spatially juxtaposed and/or overlapping with the most

prominent sites of AM peptide expression, including the epicardium and trabeculae (Figure
1G and (Wetzel-Strong et al., 2013)). Remarkably, we found a significant 30% increase in

the relative staining intensities of AM peptide in the epicardium and trabeculae of Cxcr7−/−

mice compared to wildtype littermates (Figure 1H-K), but no changes within the compact

zone where levels of Cxcr7 reporter expression were modest (Figure 1L). These findings

indicate that spatially juxtaposed and/or overlapping expression of CXCR7 and AM during

cardiac development is essential for scavenging AM peptide in cardiac tissue in vivo.

Activation of the canonical AM-receptor complex, CLR and receptor activity modifying

protein 2 (RAMP2), elicits an increase in cAMP and subsequent downstream activation and

phosphorylation of ERK (Fritz-Six et al., 2008). Utilizing a highly-sensitive

bioluminescence resonance energy transfer (BRET) reporter system (Barak et al., 2008;

Ponimaskin et al., 2007), we found that HEK293 cells that overexpress CXCR7 failed to

accumulate cAMP upon AM stimulation—a finding consistent with the lack of G-protein

coupling by decoy receptors (Figure S1B). As expected, AM treatment of CLR/RAMP2-

expressing cells resulted in a potent accumulation of cAMP (Figure S1B) and pERK:tERK

upregulation (Figure 1M, N and Figure S1C). Importantly, while AM did not elicit a

pERK:tERK upregulation in cells transfected with CXCR7 alone, the CLR-RAMP2

mediated activation of pERK:tERK was markedly abrogated when cells were co-transfected

with CXCR7 (Figure 1M, N). These in vitro signaling assays demonstrate that CXCR7 can

act as a cell-autonomous molecular rheostat to dampen canonical AM pERK:tERK

signaling.

The effects of CXCR7 on dampening pERK:tERK signaling were also confirmed in vivo,

where we noted significant accumulation of pERK staining in dermal lymphatic vessels of

postnatal day 1 Cxcr7−/− tail skin compared to wildtype littermates (Figure S2A-D).

Furthermore, we also observed a significant increase in the pERK staining in the lymphatic

sac of e13.5 Cxcr7−/− embryos compared to wildtype animals (Figure S2E-J). These in vivo

data from a genetic loss-of-function model aptly reciprocate the findings from the in vitro
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gain-of-function experiments and furthermore demonstrate that loss of Cxcr7 expression

influences ERK phosphorylation on a tissue level.

CXCR7 is dynamically expressed in lymphatic endothelium during development

Previous studies have reported that nearly one third of adult dermal lymphatic vessels

express CXCR7 (Neusser et al., 2010), but the spatiotemporal expression of CXCR7 during

developmental lymphangiogenesis has yet to be described. Using the GFP-targeted Cxcr7+/−

reporter allele, we found Cxcr7 expression co-localized with the lymphatic makers LYVE1

(Figure 2A-C), Prox1 (Figure 2G-I) and podoplanin (Figure 2I-L). At e11.5, lymphatic

progenitor cells are arranged in a stereotypically-polarized fashion within the jugular vein

(JV) and express Cxcr7 (Figure 2D-F, white arrows, Figure 2G, H). Interestingly, we often

noted that Cxcr7 expression is temporarily reduced as the lymphatic progenitors begin to

migrate away from the JV (Figure 2F, I asterisks)− underscoring the dynamic expression of

the decoy receptor in areas of active cell migration. As lymphatic cells coalesce to form the

lymph sacs (LS) between e11.5-e13.5, Cxcr7 was again expressed in some lymphatics,

which were identified by LYVE1 and podoplanin co-labeling (Figure 2J-O). Cxcr7 was

also persistently expressed in the JV cells directly adjacent to the LS (Figure 2P-R, white

arrowheads), consistent with recently published studies demonstrating a paracrine function

for decoy receptors (Moissoglu et al., 2014; Venkiteswaran et al., 2013). In summary, Cxcr7

is highly and dynamically expressed within lymphatic progenitors and early lymphatic

vessels at the time of nascent lymphangiogenesis, which also spatiotemporally correlates

with the proliferative effects of AM during lymphatic development.

Cxcr7−/− mice have enlarged, blood filled lymphatic sacs

We have previously established that AM signaling is required for normal LEC proliferation

at e13.5 (Fritz-Six et al., 2008). Thus, we investigated whether loss of Cxcr7, which we

hypothesize to be a molecular rheostat for AM, disrupts lymphangiogenesis at this point

during embryogenesis. Indeed, approximately 10% of Cxcr7−/− mice exhibited visible

interstitial edema upon dissection at midgestation (Figure 3A, white arrows, Figure 3B, C,
black arrows). Histological evaluation further revealed that approximately 10-15% of

Cxcr7−/− mice displayed interstitial edema, particularly within the thoracic regions

surrounding the developing jugular lymphatics. Additionally, we noticed abnormal LS

morphology, including markedly enlarged and dysmorphic LS in Cxcr7−/− embryos

compared to wildtype littermate embryos (Figure 3D-F). Utilizing computerized

morphometry to calculate LS and JV area, we found that the LS:JV ratio of null mice was

increased 4-fold compared to Cxcr7+/+ mice (Figure 3G). Some sections revealed failure of

the LS to separate from the JV, with prominent platelet thrombi (Figure 3F, black arrows).

Moreover, Cxcr7−/− lymphatic vessels exhibited remarkable blood (Figure 3E, asterisks)

and proteinaceous deposits (Figure 3E, arrowheads), which are phenotypes commonly

ascribed to pathologic lymphangiogenesis and lymph stasis in several mouse models

(Bertozzi et al., 2010; Murtomaki et al., 2013). A scoring rubric to assess the severity of

lymphatic defects showed that LS of Cxcr7−/− embryos had significantly more blood and

protein accumulation compared to control mice (Figure 3H, I). Taken together these results
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demonstrate that loss of Cxcr7 during embryonic development results in aberrant LS

formation.

To determine whether the blood accumulation in the LS was due to improper development

or structure of the lymphovenous valves, we stained frontally sectioned embryos with the

lymphatic markers Prox1 and podoplanin. We observed no structural differences between

Cxcr7+/+ and Cxcr7−/− lymphovenous valves (Figure S3A, B), with both wildtype and

mutant animals exhibiting characteristic high-Prox1 staining on the valve leaflet. We next

considered whether the blood accumulation in Cxcr7−/− lymph sacs might be associated with

precocious development of the lymphatic sac. As expected, e11.5 wildtype embryos

exhibited polarization of LYVE1+ lymphatic progenitors within the jugular vein. However,

some Cxcr7−/− littermate embryos exhibited premature migration of LECs from the jugular

vein and precocious formation of enlarged, blood-filled lymph sacs (S3C, D)—a process

that typically occurs 1-2 days later in development. Thus, we reasoned that the likely cause

of blood accumulation in the Cxcr7−/− mutants is precocious lymph sac formation prior to

proper separation of the blood and lymphatic vascular systems.

Loss of CXCR7 enhances LEC migration in vivo and in vitro

We next sought to determine whether loss of Cxcr7 affected lymphangiogenesis in other

lymphatic vascular beds. At e18.5, staining of Cxcr7−/− cardiac tissue revealed increased

LYVE1+ vessels on the surface of the heart (Figure 4A). This increase might be expected

due to the cardiac hyperplasia in Cxcr7−/− embryos. Nevertheless, when normalized to total

surface area of the heart, null animals exhibited a 20% increase in cardiac lymphatic vessels

on the ventral surface of the heart (Figure 4B). Higher power examination of the cardiac

lymphatic vessels of Cxcr7−/− animals revealed a disruption of branching complexity and

lacunae number (Figure S4A-F), as well as an extensive network of lymphatic vessels in the

curvature of the outflow tract on cardiac dorsal-surface (Figure S4C, arrows) which were

not present in wildtype mice. Additionally, these LYVE1+ vessels tended to extend farther

down the apex of the heart in Cxcr7−/− embryos, suggesting that Cxcr7 also affects LEC

migration (Figure 4A, C).

To elucidate whether loss of CXCR7 is directly involved in enhancing AM-mediated

downstream signaling pathways and cellular migration, we utilized shRNA lentiviral vectors

to achieve 80% knockdown of CXCR7 in human neonatal-LECs (Figure 4D). We first used

a scavenger assay to confirm that CXCR7 shRNA-infected LECs scavenged less AM than

control cells, resulting in increased AM available to interact with the signaling receptor,

CLR/R2 (Figure S5A, B). Next, we showed that knockdown of endogenous CXCR7 in

LECs results in an increase in AM-mediated ERK phosphorylation, with CXCR7 shRNA-

infected LECs exhibiting a potent upregulation in pERK:tERK ratios in response to AM

treatment, whereas control cells did not (Figure S5C).

These CXCR7 knockdown cells were then used to evaluate whether loss of CXCR7

enhances AM-mediated LEC migration. Using an in vitro scratch assay, we showed that AM

promotes LEC migration, since AM-treated control cells migrated 41% more than vehicle-

treated cells (Figure 4E, G). On the other hand, AM treatment of CXCR7 knockdown cells
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caused the cells to migrate into the scratch 66% more than vehicle-treated cells (Figure 4F,
H). Moreover, percent migration of AM-treated CXCR7 knockdown LECs was significantly

increased above all other conditions (Figure 4I). These scratch assay findings were fully

recapitulated using a transwell migration assay (Figure 4J). Finally, the effect of CXCR7 on

AM-mediated cell migration was corroborated using an overexpression model. As expected,

AM treatment of CLR/RAMP2-expressing HEK293T cells resulted in increased migration

across a transwell. However, this migration was abrogated when cells were co-transfected

with a CXCR7 expression plasmid (Figure 4K). Collectively, these data show that CXCR7

expression modulates AM-mediated downstream signaling activity, with knockdown of

endogenous CXCR7 increasing and overexpression of CXCR7 reducing AM-mediated

cellular migration.

Dermal lymphatic vessels of Cxcr7−/− animals are enlarged, with less branching
complexity

We also observed morphological changes in the dermal lymphatic vessels of Cxcr7−/− mice.

Interestingly, although there was stochastic expression of Cxcr7 in dermal lymphatic vessels

(Figure S6), we consistently observed Cxcr7 expression in blood vessels, again suggesting

that non-cell autonomous expression of Cxcr7 can affect lymphangiogenesis. While the

dermal lymphatics of wildtype animals formed a highly-structured lattice network, those of

Cxcr7−/− embryos failed to extend and connect to neighboring vessels, resulting in fewer

ring-like structures or lacunae (Figure 5A, B asterisks). For example, control lymphatic

capillary networks comprised between 6-8 lacunae per image, but the lymphatic network of

Cxcr7−/− skin consisted of only 4-5 lacunae per image (Figure 5C). Quantitation of the

number of branch points also revealed a significant reduction in branching complexity, from

23.2 to 16.3 per image, between control and Cxcr7−/− dermal lymphatics (Figure 5D).

(Image area measured 132800 μm2.) Additionally, Cxcr7−/− dermal lymphatic vessels were

enlarged compared to littermate controls (Figure 5E-I, yellow dashed line). The junctional

area where vessels coalesce to form a branch point was also increased (Figure 5G, H, J
yellow solid line).

Previously published studies demonstrate that this type of increase in vessel diameter and

decreased branching complexity is consistent with a hyperplastic phenotype (Coxam et al.,

2014; James et al., 2013), suggesting that loss of CXCR7 results in hyperproliferation of

LECs. We therefore sought to determine if this hyperplastic phenotype of Cxcr7−/− dermal

lymphatics could be attributed to increased AM-mediated LEC proliferation—a biological

effect of AM which has been demonstrated by our group and others (Fritz-Six et al., 2008;

Jin et al., 2008; Karpinich et al., 2013). Using CXCR7 knockdown LECs, we observed a

50% increase in proliferation in AM-treated CXCR7 knockdown LECs compared to AM-

treated control cells (Figure 5K). Collectively, these data demonstrate that loss of CXCR7

promotes AM-mediated LEC lymphangiogenesis by enhancing both migration and

proliferation in vivo and in vitro.

Genetic titration of Adm changes Cxcr7−/− survival

We next sought to determine whether the phenotypes of Cxcr7−/− embryos could be causally

associated with AM ligand concentration in vivo. To test this, we employed a genetic
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approach, depicted in Figure 6A, C, which allowed for the generation of Cxcr7 gene-

targeted mice on a titrated background of AM ligand that ranges from 50% to 300%

wildtype levels. Adm+/− mice express 50% of wildtype levels of Adm mRNA and peptide

and exhibit exacerbated cardiovascular damage, reduced female fertility, and defective

lymphatic function (Caron and Smithies, 2001; Li et al., 2006; Nikitenko et al., 2013).

Admhi/hi animals survive to adulthood, but exhibit profound cardiac hyperplasia during

development (Wetzel-Strong et al., 2013). Therefore, we were confident that the effective

dosage of AM peptide achieved with the AM “gene titration” mice was within a range that

would have significant biological impact on lymphatic and cardiac development.

First, because we noted some embryonic lethality in Cxcr7−/− animals in the genetic

reduction experiment, we asked whether Adm haploinsufficiency might improve Cxcr7−/−

embryo survival during mid-gestation. At e13.5 we observed equivalent numbers of

Cxcr7−/−;Adm+/+ and Cxcr7−/−;Adm+/−animals from compound heterozygous intercrosses

(Figure 6B, e13.5). However, at e14.5 the expected 1:1 ratio of Cxcr7−/−; Adm+/+:Cxcr7−/−;

Adm+/− mice was significantly skewed, with less than 50% of the expected Cxcr7−/−;

Adm+/+ genotype being offset by a disproportionate survival of Cxcr7−/−;Adm+/− embryos

(Figure 6B, e14.5). Thus, haploinsufficiency of Adm improves Cxcr7−/− embryo survival

during mid-gestation. It is also noteworthy that embryonic lethality was significantly

increased in the Cxcr7+/−;Adm+/− cross, which is likely due to the critical role of AM in

female reproductive physiology (Lenhart and Caron, 2012; Lenhart et al., 2014; Li et al.,

2013; Li et al., 2008; Li et al., 2006). This finding suggests that disruption of the parental

CXCR7-AM axis likely contributes to the severity of the phenotypes.

Next, we bred Cxcr7+/− mice to Admhi/hi animals in order to evaluate whether AM

overexpression might exacerbate Cxcr7−/− gestational loss or influence survival.

Interestingly, we found that postnatal survival of compound heterozygous pups was poor,

with nearly 30% postnatal lethality, making maintenance of the Cxcr7+/−;Admhi/+ mouse

colony very challenging. Whereas we had not previously observed Cxcr7+/− pup lethality in

other genetic crosses, Cxcr7+/− animals that expressed a single Admhi allele were more

susceptible to death. Moreover, homozygosity for the Admhi allele resulted in a striking 65%

lethality of Cxcr7+/−;Admhi/hi mice (Figure 6D). Collectively, these data demonstrate that

titration of the endogenous AM ligand is causally associated with profound changes in the

survival of Cxcr7 gene targeted animals.

Haploinsufficiency of AM normalizes lymphatic and cardiac hyperproliferation of Cxcr7−/−

mice

Based on the improved embryonic survival of Cxcr7−/−;Adm+/− embryos, we next

performed phenotypic characterization of lymphatic and cardiac development in these

animals, with the expectation that haploinsufficiency for AM ligand might normalize the

hypertrophic cardiovascular phenotypes of Cxcr7 null embryos. Importantly,

haploinsufficiency of AM had no effect on the LS:JV ratio in Cxcr7+/+ animals (Figure 6E,
F). Consistent with Figures 3E-G, the podoplanin-positive lymph sacs of e13.5

Cxcr7−/−;Adm+/+ embryos showed a significant 4-fold enlarged LS:JV ratio compared to

wildtype littermates (Figure 6G, I). However, this lymph sac enlargement was normalized
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in Cxcr7−/−;Adm+/− mice, resulting in LS:JV ratios that were statistically indistinguishable

from wildtype animals (Figure 6H, I). Additionally, we used Ki67 staining to quantitate the

number of proliferating LECs and found a direct correlation between the proliferation of

LECs and the LS:JV ratios and genotypes. While Cxcr7−/−;Adm+/+ mice had significantly

more proliferating cells in the LS compared to wildtype animals (Figure 6G, J),

haploinsufficiency for AM (Cxcr7−/−;Adm+/−) allowed this hyperproliferation to revert to

levels that were equivalent to those observed in wildtype animals (Figure 6H, J). Taken

together, these findings demonstrate that the increase in LS:JV ratio in CXCR7 null mice is

due to an increase in LEC proliferation which can be reversed by genetic reduction of AM

ligand.

Similar effects were observed in the developing heart. Using BrdU incorporation assays, we

quantitated the amount of proliferating cells in e11.5 cardiac tissue from the AM genetic

titration animals. Percent proliferation of cardiac cells in Cxcr7+/+;Adm+/− animals was

equivalent to wildtype animals, demonstrating that Adm haploinsufficiency alone does not

affect heart size (Figure 7A-D). Consistent with other studies (Gerrits et al., 2008), we

noted a statistically significant increase in proliferation of Cxcr7−/− cardiac tissue compared

to wildtype (Figure 7E, F, I). Importantly, this aberrant cardiac hyperproliferation was

normalized to wildtype levels in Cxcr7−/−;Adm+/− embryos (Figure 7G, H, I). We noted

increased proliferation particularly within the epicardium and trabeculae (Figure 7F-H,
arrows and arrowheads respectively)--regions of the heart where CXCR7 is highly expressed

(see Figure 1F). Furthermore, 2 days after the AM-mediated peak in myocyte proliferation,

many of the hearts of Cxcr7−/−;Adm+/− embryos appeared phenotypically normal and

similar in size to wildtype animals (Figure 7J-L). We therefore conclude that genetic

reduction of AM peptide alleviates the pathological cardiac hyperproliferation of Cxcr7 null

animals and ultimately impacts cardiac size during development.

Though difficulty maintaining the line precluded extensive timed matings, we observed even

more precocious development of the LS of Cxcr7−/−;Admhi/hi embryos. At e11.5,

Cxcr7−/−;Admhi/hi embryos often had fully formed lymph sacs that were dramatically

enlarged, and blood filled (Figure S3E). This further exacerbated lymphatic development

confirmed our hypothesis that Cxcr7−/− LS develop precociously. Hearts of Cxcr7−/− on the

Admhi/hi background also tended to be enlarged with thickened compact zones and

significant blood accumulation in the ventricles and atria (data not shown).

Discussion

The pleiotropic consequences of CXCR7 loss have made it difficult to discern which

ligand(s) are responsible for a given phenotype. In this study, using both loss-of-function

and gain-of-function animal models, we demonstrate that several of the essential functions

of CXCR7 during cardiovascular development can be attributed to its decoy activities for the

ligand, AM. Haploinsufficiency of AM in a Cxcr7−/− animal effectively reversed cardiac

and lymphatic hyperproliferation, demonstrating that CXCR7 is required as a molecular

rheostat for controlling AM ligand availability during development. While other atypical

chemokine receptors are known to bind multiple ligands, only recently has the repertoire of

CXCR7 ligands been expanded beyond the chemokines CXCL12 and CXCL11. For
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example, a very recent study has elegantly demonstrated that proteolytic peptide fragments

of the adrenal neuropeptide proenkaphalin A interact with CXCR7 and thereby mediate

responses to glucocorticoid secretion and anxiety behaviors in mice (Ikeda et al., 2013).

Structure-function studies of the proenkaphalin A-derived peptides, along with our current

findings on the AM peptide, further highlight the ability of CXCR7 to bind to several classes

of small peptidergic ligands, which also happen to be particularly enriched in the adrenal

gland. Whether adrenomedullin—which as it name implies, is also highly expressed in the

adrenal gland—is also implicated in the CXCR7-mediated glucocorticoid secretion and

anxiety behaviors has yet to be determined.

Likewise, our study does not formally rule out the involvement of CXCL12 in the described

cardiovascular hyperplasia phenotypes of Cxcr7−/− mice. Genetic deletion of either CXCR4

or CXCL12 has been associated with defective ventricular septum formation (Ma et al.,

1998; Zou et al., 1998). However, only recently have studies in chick embryos demonstrated

a gain-of-function phenotype for CXCL12 overexpression in neural crest cell migration

related to cardiac development (Escot et al., 2013). While the effects of CXCL12

overexpression might be anticipated to more closely parallel the effects of CXCR7 loss-of-

function, the cardiac phenotypes of these two models are markedly different. CXCL12 mis-

expression in chick embryos diverts neural crest cell migration to the heart, while CXCR7

deficiency promotes cardiac myocyte hyperplasia and septal defects. Our current study does

not preclude the functional deregulation of CXCL12, however it does definitively

demonstrate that genetic reduction in AM ligand is fully sufficient to rescue the Cxcr7−/−

cardiac hyperplasia. Therefore, although we cannot exclude potential effects of CXCL12 on

the Cxcr7−/− cardiac phenotypes, we have identified AM as the critical ligand for mediating

the cardiac hyperproliferation.

With respect to lymphangiogenesis, genetic studies in zebrafish have also established a

central role for CXCL12(SDF-1)/CXCR4 signaling during the stepwise assembly of the

lymphatic trunk network (Cha et al., 2012). Interestingly, the requirement for CXCL12 in

guiding zebrafish LEC migration occurs at developmental time points that are subsequent to

LEC sprouting from the posterior cardinal vein. However, our expression studies in mice

revealed little expression of CXCR7 in LECs that have migrated away from the jugular vein,

and we failed to observe prominent defects in the migration and assembly of lymphatic sacs

in Cxcr7−/− mice. Although these spatiotemporal differences in receptor-ligand expression

patterns may simply be attributed to differences between species, a more compelling

implication of these studies is that dynamic changes in the expression of CXCR4 and

CXCR7 may be critical for orchestrating the extent and time frame to which nascent LECs

sense and respond to different lymphangiogenic growth factors. Moreover, the dynamic

spatiotemporal expression of signaling and decoy receptors likely provides a mechanism for

individual LECs and their adjacent tissues to create a localized microgradient of chemotactic

or proliferative factors (Dona et al., 2013; Venkiteswaran et al., 2013) to promote the

stepwise growth of lymphatic vessels.

Although our current study has focused on the effects of CXCR7 on AM-mediated cardiac

and lymphatic development, it is important to recognize that the interaction of CXCR7 with

AM may initiate downstream signaling and active processes in other cell types or tissues.

Klein et al. Page 10

Dev Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For example, several studies have pointed to potential non-decoy functions of CXCR7, such

as signaling through ß-arrestin, heterodimerizing with other GPCRs in certain tissues, and

coupling with G-proteins in astrocytes (Kapas and Clark, 1995; Odemis et al., 2012;

Rajagopal et al., 2010). Therefore, while we have currently established CXCR7 as a

molecular rheostat for AM signaling during cardiovascular development, future studies may

identify potential CXCR7-GPCR complexes that allow for functional AM signaling in other

cell types or tissues.

Our findings of increased ERK phosphorylation in dermal lymphatics of Cxcr7−/− mice are

consistent with several previously described models with aberrant lymphangiogenesis

associated with increased ERK signaling. For example, ex vivo expression of Spred-1/2,

negative regulators of ERK activation, suppresses LEC proliferation while double knockout

mice exhibit dilated, blood-filled lymphatics— similar to the Cxcr7−/− phenotype described

here (Taniguchi et al., 2007). Likewise, mice lacking apopotosis stimulating protein of p53

(Aspp1) have increased ERK activation and exhibit similar transient subcutaneous edema

with dilated and dysmorphic lymphatics and increases in cardiac LYVE1+ staining

(Hirashima et al., 2008). Most recently, a fine-tuned balance between ERK and Akt

signaling pathways has been recognized as an essential component for establishing LEC fate

determination and differentiation (Deng et al., 2013; Simons and Eichmann, 2013).

Collectively, these studies identify ERK signaling as a critical regulator of

lymphangiogenesis and either loss or excessive ERK signal as a cause of aberrant

lymphangiogenesis. Results of this study identify a mechanism, whereby the positioning of a

decoy receptor at the junction of lymphatic sprouting and migration serves as a biological

rheostat for regulating the migratory and mitogenic effects of lymphangiogenic growth

factors that are upstream of ERK activation. Additional studies to determine whether and

how other atypical chemokine receptors may influence cardiac and lymphatic development

are warranted and may lead to conceptual paradigms about how growth factor gradients and

their downstream signaling pathways can be precisely controlled by 7-transmembrane decoy

receptors during cardiovascular development.

Experimental Procedures

Mice

Mice that contain a GFP reporter knocked into the Cxcr7 gene were purchased (C57BL/6-

Ackr3tm1Litt/J, The Jackson Laboratory). Generation of Adm+/− and Admhi/hi mice with a

targeted, deletion and overexpression of Adm, respectively, has been previously described.

(Caron and Smithies, 2001; Dackor et al., 2006; Li et al., 2013). For timed pregnancies,

Cxcr7+/− animals were intercrossed with Cxcr7+/− or Cxcr7+/−;Adm+/− animals. Dams

were monitored for vaginal plugs, and the day when the vaginal plug was detected was

considered E0.5. Cxcr7+/−;Admhi/+ animals were also intercrossed to establish survival. For

BrdU incorporation assays, pregnant females were injected with BrdU (0.1 mg/g of BW,

Sigma-Aldrich) via intraperitoneal injection two hours prior to dissection. All experiments

involving mice were approved by the Institutional Animal Care and Use Committee at the

University of North Carolina at Chapel Hill.
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Cell culture and RNAi

Human adult (HMVECdLyAd-Der) and neonatal (HMVEC-d Neo) dermal lymphatic

endothelial cells (Lonza) were cultured in EGM-2MV media. HEK293T cells were

maintained in DMEM with 10% fetal bovine serum and 1% penicillin streptomycin or

gentamicin. Lentiviral particle production and infection were performed according to

standard protocol. Briefly, human CXCR7 shRNA pLKO1 vectors (UNC Viral Core) were

co-transfected into HEK293T cells with lentiviral packaging vectors psPAX2 and MD2.G

(Addgene) using Lipofectamine 2000 (Invitrogen). Viral supernatants were filtered,

supplemented with 6ug/mL polybrene, and used to infect LECs for 48 hours before

functional assays were performed.

Gene Expression Analysis

Agilent human gene expression microarrays were performed on three independent plates of

hLECs treated with 10nM AM (American Peptide Company). Analysis was performed using

the Significance Analysis of Microarrays (SAM) software (Stanford University). For

embryonic endothelial cells, CD31 positive cells were isolated using magnetic beads.

Quantitative RT-PCR was performed using primers and probes or hCXCR7 Assays on

Demand (Life Technology) after reverse transcription of 2 μg of total RNA. For AM22-52

treatment, cells were incubated with 1μM AM22-52 (American Peptide Company) for 30

minutes prior to treatment with 10nM AM and 1μM AM22-52.

Scavenger assay

HEK293T cells were transfected with CXCR7 or pcDNA3.1 (negative control) using

standard calcium phosphate transfection. Cells were treated with biotinylated-AM (Phoenix

Pharmaceuticals), and aliquots of media were collected over 8 hours. Biotinylated-AM was

detected with IRDye Streptavidin (1:2500, Li-COR).

ERK phosphorylation

HEK293T cells were transfected with expression plasmids, serum starved for 20 hours, and

treated with vehicle or 10nM AM for 1 minute. Blots were blocked in 5% BSA, probed

overnight with monoclonal rabbit anti-mouse pERK and tERK (1:1000, Cell Signaling) and

monoclonal mouse anti-GAPDH (1:2000, Novus Biologicals), incubated in appropriate

secondary antibody, and imaged on the Odyssey scanner (Li-COR). A blot with 3

independent experiments run on the same gel was used to perform statistical analysis.

Immunohistochemistry

Embryo sections and whole mount tissue were permeabilized, blocked with 5% normal

donkey serum, and incubated overnight at room temperature with primary antibodies, and

then probed with appropriate secondary antibodies. Antibodies are described in the

supplemental experimental procedures.

Quantitation of LS:JV ratio and Blood and Protein Accumulation in LS

Transverse sections of jugular lymph sacs of wildtype and mutant mice were H&E stained.

The area of the LS and JV were measured using ImageJ software (NIH), and sections were
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graded for blood and protein accumulation in the LS using a scoring rubric. Blood and

protein were graded as follows: 0 = no red blood cells (RBC); 1 = 3-10 RBC; 2 = 3-50

RBCs; 3 = >50 RBCs; 0 = no protein; 1 = minimal protein accumulation; 2 = moderate

protein accumulation; 3 = extensive protein accumulation. Brightfield images were taken on

a Leitz Dialux 20 Micrscope.

In vitro Migration and Proliferation Assays

Scratch assay—CXCR7 knockdown (and negative control) LECs were grown to

confluence and then scratched with a pipette tip. LECs were rinsed with PBS to remove non-

adherent cells and then treated in 0.5% FBS RPMI with vehicle or 10nM AM. Four fields

per well were imaged at T=0 hrs and at T=18hrs post-scratch using an Olympus IX-81

inverted microscope equipped with a QImaging Retiga 4000R camera at 4X magnification.

The percent change in migration was calculated by measuring the open area of the scratch

(ImageJ). Results shown are representative of three independent experiments.

Transwell migration assay—HEK293T cells transfected with expression plasmids and

LECs with lentiviral induced CXCR7 knockdown were labeled with 5μM Cell Tracker

Green (CTG) CMFDA (Life Technologies). Cells (1×105) were treated with 10nM AM for 5

min and then seeded onto 8μm transwell inserts (BD Biosciences). After 4 hour incubation,

inserts were fixed with 4% PFA, and filters were mounted for analysis. Quantification of

transmigrated cells was done by measuring the threshold of CTG-labeled cell fluorescence

using ImageJ (NIH).

Proliferation—CXCR7 knockdown and scramble LECs were plated, serum starved for 4

hours, then treated with 10nM AM for 24 hours. Cells counts were assessed using a

Countess Automated Cell counter (Life Technology).

Statistical Analysis

Student's two-tailed t test was used for all comparisons unless otherwise noted in the figure

legend.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Dr. Nikolaus Heveker, Univ. de Montreal, for his helpful discussions and insights. We also thank
former members of the Caron laboratory, including Kimberly Fritz-Six, Drs. Manyu Li, Mahita Kadmiel, and
Patricia Lenhart, and Kirk McNaughton and Ashley Ezzell of the Histopathology Core for their assistance with
experiments and technical guidance. This work was supported by funds from the American Heart Association EIA
(0555424U) and NIH grants (HD060860 and DK099156) to KMC, F30 HL118932 to KRK and training grants
HL069768 and GM008719.

References

Barak LS, Salahpour A, Zhang X, Masri B, Sotnikova TD, Ramsey AJ, Violin JD, Lefkowitz RJ,
Caron MG, Gainetdinov RR. Pharmacological characterization of membrane-expressed human trace

Klein et al. Page 13

Dev Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



amine-associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP
biosensor. Mol Pharmacol. 2008; 74:585–594. [PubMed: 18524885]

Berahovich RD, Zabel BA, Lewen S, Walters MJ, Ebsworth K, Wang Y, Jaen JC, Schall TJ.
Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology.
2014; 141:111–122. [PubMed: 24116850]

Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, Xu B, Lu MM, Zhou D,
et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood.
2010; 116:661–670. [PubMed: 20363774]

Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu
Q, Raz E. Control of chemokine-guided cell migration by ligand sequestration. Cell. 2008;
132:463–473. [PubMed: 18267076]

Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a
functional Adrenomedullin gene. Proc Natl Acad Sci U S A. 2001; 98:615–619. [PubMed:
11149956]

Cha YR, Fujita M, Butler M, Isogai S, Kochhan E, Siekmann AF, Weinstein BM. Chemokine
signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev
Cell. 2012; 22:824–836. [PubMed: 22516200]

Coxam B, Sabine A, Bower NI, Smith KA, Pichol-Thievend C, Skoczylas R, Astin JW, Frampton E,
Jaquet M, Crosier PS, et al. Pkd1 Regulates Lymphatic Vascular Morphogenesis during
Development. Cell Rep. 2014; 7:623–633. [PubMed: 24767999]

Dackor RT, Fritz-Six K, Dunworth WP, Gibbons CL, Smithies O, Caron KM. Hydrops fetalis,
cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor
gene. Mol Cell Biol. 2006; 26:2511–2518. [PubMed: 16537897]

Dambly-Chaudiere C, Cubedo N, Ghysen A. Control of cell migration in the development of the
posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and
CXCR7/RDC1. BMC Dev Biol. 2007; 7:23. [PubMed: 17394634]

Deng Y, Atri D, Eichmann A, Simons M. Endothelial ERK signaling controls lymphatic fate
specification. J Clin Invest. 2013; 123:1202–1215. [PubMed: 23391722]

Dona E, Barry JD, Valentin G, Quirin C, Khmelinskii A, Kunze A, Durdu S, Newton LR, Fernandez-
Minan A, Huber W, et al. Directional tissue migration through a self-generated chemokine
gradient. Nature. 2013; 503:285–289. [PubMed: 24067609]

Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK. CXCL12 (SDF1alpha)-CXCR4/
CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res.
2011; 17:2074–2080. [PubMed: 21349998]

Dunworth WP, Fritz-Six KL, Caron KM. Adrenomedullin stabilizes the lymphatic endothelial barrier
in vitro and in vivo. Peptides. 2008; 29:2243–2249. [PubMed: 18929609]

Escot S, Blavet C, Hartle S, Duband JL, Fournier-Thibault C. Misregulation of SDF1-CXCR4
signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res.
2013; 113:505–516. [PubMed: 23838132]

Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine
lymphatic vascular development. J Clin Invest. 2008; 118:40–50. [PubMed: 18097475]

Gerrits H, van Ingen Schenau DS, Bakker NE, van Disseldorp AJ, Strik A, Hermens LS, Koenen TB,
Krajnc-Franken MA, Gossen JA. Early postnatal lethality and cardiovascular defects in CXCR7-
deficient mice. Genesis. 2008; 46:235–245. [PubMed: 18442043]

Graham GJ, Locati M, Mantovani A, Rot A, Thelen M. The biochemistry and biology of the atypical
chemokine receptors. Immunol Lett. 2012; 145:30–38. [PubMed: 22698181]

Hirashima M, Sano K, Morisada T, Murakami K, Rossant J, Suda T. Lymphatic vessel assembly is
impaired in Aspp1-deficient mouse embryos. Dev Biol. 2008; 316:149–159. [PubMed: 18304521]

Hoopes SL, Willcockson HH, Caron KM. Characteristics of multi-organ lymphangiectasia resulting
from temporal deletion of calcitonin receptor-like receptor in adult mice. PLoS One. 2012;
7:e45261. [PubMed: 23028890]

Ikeda Y, Kumagai H, Skach A, Sato M, Yanagisawa M. Modulation of circadian glucocorticoid
oscillation via adrenal opioid-CXCR7 signaling alters emotional behavior. Cell. 2013; 155:1323–
1336. [PubMed: 24315101]

Klein et al. Page 14

Dev Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



James JM, Nalbandian A, Mukouyama YS. TGFbeta signaling is required for sprouting
lymphangiogenesis during lymphatic network development in the skin. Development. 2013;
140:3903–3914. [PubMed: 23946447]

Jin D, Harada K, Ohnishi S, Yamahara K, Kangawa K, Nagaya N. Adrenomedullin induces
lymphangiogenesis and ameliorates secondary lymphoedema. Cardiovasc Res. 2008; 80:339–345.
[PubMed: 18708640]

Kapas S, Clark AJ. Identification of an orphan receptor gene as a type 1 calcitonin gene-related peptide
receptor. Biochem Biophys Res Commun. 1995; 217:832–838. [PubMed: 8554605]

Karpinich NO, Hoopes SL, Kechele DO, Lenhart PM, Caron KM. Adrenomedullin Function in
Vascular Endothelial Cells: Insights from Genetic Mouse Models. Curr Hypertens Rev. 2011;
7:228–239. [PubMed: 22582036]

Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y, Caron KM.
Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB
J. 2013; 27:590–600. [PubMed: 23099649]

Lenhart PM, Caron KM. Adrenomedullin and pregnancy: perspectives from animal models to humans.
Trends Endocrinol Metab. 2012; 23:524–532. [PubMed: 22425034]

Lenhart PM, Nguyen T, Wise A, Caron KM, Herring AH, Stuebe AM. Adrenomedullin signaling
pathway polymorphisms and adverse pregnancy outcomes. Am J Perinatol. 2014; 31:327–334.
[PubMed: 23797962]

Li M, Schwerbrock NM, Lenhart PM, Fritz-Six KL, Kadmiel M, Christine KS, Kraus DM,
Espenschied ST, Willcockson HH, Mack CP, et al. Fetal-derived adrenomedullin mediates the
innate immune milieu of the placenta. J Clin Invest. 2013; 123:2408–2420. [PubMed: 23635772]

Li M, Wu Y, Caron KM. Haploinsufficiency for adrenomedullin reduces pinopodes and diminishes
uterine receptivity in mice. Biol Reprod. 2008; 79:1169–1175. [PubMed: 18716289]

Li M, Yee D, Magnuson TR, Smithies O, Caron KM. Reduced maternal expression of adrenomedullin
disrupts fertility, placentation, and fetal growth in mice. J Clin Invest. 2006; 116:2653–2662.
[PubMed: 16981008]

Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA.
Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-
and SDF-1-deficient mice. Proc Natl Acad Sci U S A. 1998; 95:9448–9453. [PubMed: 9689100]

Moissoglu K, Majumdar R, Parent CA. Cell migration: sinking in a gradient. Curr Biol. 2014; 24:R23–
25. [PubMed: 24405672]

Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V, Kitajewski J, Shawber CJ. Notch1
functions as a negative regulator of lymphatic endothelial cell differentiation in the venous
endothelium. Development. 2013; 140:2365–2376. [PubMed: 23615281]

Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG, Rot A, Thelen M.
CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One. 2010; 5:e9175. [PubMed:
20161793]

Neusser MA, Kraus AK, Regele H, Cohen CD, Fehr T, Kerjaschki D, Wuthrich RP, Penfold ME,
Schall T, Segerer S. The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells
during renal allograft rejection. Kidney Int. 2010; 77:801–808. [PubMed: 20164826]

Nibbs RJ, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 2013;
13:815–829. [PubMed: 24319779]

Nikitenko LL, Shimosawa T, Henderson S, Makinen T, Shimosawa H, Qureshi U, Pedley RB, Rees
MC, Fujita T, Boshoff C. Adrenomedullin haploinsufficiency predisposes to secondary
lymphedema. J Invest Dermatol. 2013; 133:1768–1776. [PubMed: 23364478]

Odemis V, Lipfert J, Kraft R, Hajek P, Abraham G, Hattermann K, Mentlein R, Engele J. The
presumed atypical chemokine receptor CXCR7 signals through G(i/o) proteins in primary rodent
astrocytes and human glioma cells. Glia. 2012; 60:372–381. [PubMed: 22083878]

Ponimaskin, EG.; Heine, M.; Zeug, A.; Voyno-Yasenetskaya, T.; Salonikidis, PS. Monitoring
Receptor-Mediated Changes of Intracellular cAMP Level by Using Ion Channels and Fluorescent
Proteins as Biosensors.. In: Chattopadhyay, A., editor. Serotonin Receptors in Neurobiology. Boca
Raton (FL): 2007. p. 19-40.

Klein et al. Page 15

Dev Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, Gerard C, Lefkowitz RJ. Beta-arrestin- but
not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci U S A.
2010; 107:628–632. [PubMed: 20018651]

Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, Lopez-Bendito G, Stumm R,
Marin O. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron.
2011; 69:77–90. [PubMed: 21220100]

Sanchez-Martin L, Sanchez-Mateos P, Cabanas C. CXCR7 impact on CXCL12 biology and disease.
Trends Mol Med. 2013; 19:12–22. [PubMed: 23153575]

Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, Li M, Woehl B, Leung H, Groom
J, Batten M, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in
the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A. 2007; 104:14759–
14764. [PubMed: 17804806]

Simons M, Eichmann A. Physiology. Lymphatics are in my veins. Science. 2013; 341:622–624.
[PubMed: 23929973]

Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, Oike Y, Yonemitsu Y, Maehara Y,
Yoshimura A. Spreds are essential for embryonic lymphangiogenesis by regulating vascular
endothelial growth factor receptor 3 signaling. Mol Cell Biol. 2007; 27:4541–4550. [PubMed:
17438136]

Thelen M, Thelen S. CXCR7, CXCR4 and CXCL12: an eccentric trio? J Neuroimmunol. 2008; 198:9–
13. [PubMed: 18533280]

Valentin G, Haas P, Gilmour D. The chemokine SDF1a coordinates tissue migration through the
spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol. 2007; 17:1026–1031. [PubMed:
17570670]

Venkiteswaran G, Lewellis SW, Wang J, Reynolds E, Nicholson C, Knaut H. Generation and
dynamics of an endogenous, self-generated signaling gradient across a migrating tissue. Cell.
2013; 155:674–687. [PubMed: 24119842]

Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, Pleasure SJ, Behrens T, Rubenstein JL.
CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron. 2011;
69:61–76. [PubMed: 21220099]

Wetzel-Strong SE, Li M, Klein KR, Nishikimi T, Caron KM. Epicardial-derived adrenomedullin
drives cardiac hyperplasia during embryogenesis. Dev Dyn. 2013; 243:243–256. [PubMed:
24123312]

Yu S, Crawford D, Tsuchihashi T, Behrens TW, Srivastava D. The chemokine receptor CXCR7
functions to regulate cardiac valve remodeling. Dev Dyn. 2011; 240:384–393. [PubMed:
21246655]

Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor
CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998; 393:595–599. [PubMed:
9634238]

Klein et al. Page 16

Dev Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Highlights

• Adrenomedullin (AM) is a biological ligand for CXCR7

• CXCR7 scavenges AM peptide and dampens AM-mediated pERK, in vitro and

in vivo

• Dynamic expression of CXCR7 is required for proper lymphangiogenesis

• Genetic reduction of AM reverses lymphatic and cardiac hyperplasia of

Cxcr7−/− mice

Klein et al. Page 17

Dev Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. CXCR7 scavenges AM, dampens AM-mediated ERK phosphorylation in vitro, and
reduces AM peptide levels in vivo
(A) Cxcr7 expression in cardiac tissue of Adm+/+ and Admh/hi mice (n=6) and isolated

endothelial cells of Adm+/+ and Adm−/− mice (n=3)

(B) The nine most significantly upregulated and four most significantly downregulated

genes in human LECs (hLECs) treated with 10nM AM for 1 hour.

(C) CXCR7 expression in vehicle and 10nM AM treated hLECs at 15m, 1h and 24h, and

AM22-52, AM, and [AM22-52+AM] for 4 hr.
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(D) Representative western blots probed for biotin and (E) quantitation of biotinylated-

AM1-52 depletion over 8 hours by either CXCR7 or EV expressing cells in three

independent experiments.

(F,G) Cxcr7 and AM staining in e13.5 Cxcr7−/− cardiac tissue with epicardial colocalization

(white arrows).

(H,I) AM staining of e13.5 Cxcr7+/+ and Cxcr7−/− cardiac tissue. White arrows highlight

epicardium, CZ identifies the compact zone, and white arrowheads highlight the cardiac

trabeculae. Images were obtained at the same exposure and the amount of AM expressed in

the three regions of the heart was assessed by measuring the integrated density of staining

using Image J software (n=3-5). Scale bars, 100 μM.

(J-L) Quantitation of AM staining intensity in Cxcr7+/+ (n=3) vs. Cxcr7−/− (n=5) animals in

3 regions of the heart, trabeculae, epicardium, and compact zone. Staining intensity is

expressed as arbitrary units of integrated density measured by ImageJ.

(M) Representative western blot and (N) quantitation of change in pERK:tERK between

vehicle and 10nM AM treated CXCR7-, CLR/R2-, and CLR/R2+CXCR7-expressing

HEK293T. Quantitation was calculated using 3 independent experiments run on the same

gel.

In (A-L), data are represented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001.

See also Figures S1, S2, and Table S1.
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Figure 2. Cxcr7 is dynamically expressed in lymphatic endothelium during development
(A-C) Cxcr7 and LYVE1 colocalize in the JV of e11.5 Cxcr7+/− animals.

(D-F) Higher magnification of the LYVE1 positive portion of the JV. White arrows

highlight areas of Cxcr7 and LYVE1 colocalization. Asterisk highlights migrating LYVE1

positive, Cxcr7 negative cells. (G-I) Cxcr7 and Prox1 colocalize in the JV of e11.5 Cxcr7+/−

animals. Asterisks highlight migrating Prox1 positive, Cxcr7 negative cells LECs.

(J-O) Cxcr7 and lymphatic markers (J, podoplanin; M, LYVE1) colocalize in the LS (white

arrows) of e11.5 (J-L) and e13.5 (M-O) Cxcr7+/− animals.
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(P-R) Cxcr7 is also expressed in cells of the JV directly adjacent to the LS. White

arrowheads highlight Cxcr7 expression in the JV. Scale bars, 50 μM.
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Figure 3. Cxcr7−/− embryos have enlarged blood filled lymphatic sacs and interstitial edema
(A-C) Some Cxcr7−/− embryos exhibit interstitial edema at e13.5 (white (A) and black (C)

arrows).

(D-F) Cxcr7−/− embryos exhibit enlarged lymph sacs filled with blood (asterisks) and

proteinaceous deposits (arrowheads) at e13.5.

(F) In some Cxcr7−/− embryos, the LS fails to separate from the JV properly. Platelet

thrombi are highlighted by arrowheads.

(G-I) Quantitation of the LS:JV ratio (t test) and blood and protein accumulation (Mann-

Whitney U test) in the LS of Cxcr7−/− embryos (n=10) compared to wildtype controls (n=5).

A detailed description of the scoring rubric is provided in the methods section. Data are

represented as mean ± SEM. *p<0.05, **p<0.01.

See also Figure S3.
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Figure 4. Loss of CXCR7 enhances cardiac lymphangiogenesis by promoting AM-mediated
cellular migration
(A) View of ventral side of whole mount hearts of e18.5 embryos stained with the lymphatic

marker LYVE1.

(B,C) Quantitation of LYVE1 staining normalized to surface area (B) and LEC migration

down the apex of the hearts (C) (n=3).

(D) CXCR7 knockdown in LECs by two shRNA lentiviral constructs.

(E-H) Control or CXCR7 knockdown LECs treated with vehicle (E,F) or 10nM AM at 18

hrs (G,H). Migration from the time of scratch (T=0) was measured. Scale bars,100 μM.

(I) Quantitation of LEC migration in CXCR7 knockdown and control LECs.

(J,K) Quantitation of transwell migration of CXCR7 knockdown LECs treated with vehicle

or 10nM AM (J), and empty vector (EV), CXCR7-, CLR/R2-, and CLR/R2+CXCR7-

expressing HEK293T cellstreated with 10nM AM.

Data are represented as mean ± SEM. *p<0.05, **p<0.01.

See also Figure S4 and S5.
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Figure 5. Loss of CXCR7 causes enlarged dermal lymphatics with decreased branching
complexity in vivo and enhances LEC proliferation in vitro
(A,B) Cxcr7−/− P1 skin (n=5) exhibit dysmorphic dermal lymphangiogenesis compared to

controls (n=4). White asterisks identify a lacuna; yellow dots highlight branch points. Scale

bars, 50 μM.

(C,D) Quantitation of the number of lacunae and branch points respectively. Fewer lacunae

and decreased branching complexity were observed in Cxcr7−/− animals. A branch point is

defined as a vessel with 3 vessels branching away. A lacuna is defined as a space where 3 or

more branch points coallesce.

(E-H) Skin of e13.5 Cxcr7−/− embryos. Scale bars, 50 μM.

(I-J) Lymphatic vessels of P1 Cxcr7−/− embryos are dilated, with increased junctional area

where vessels coalesce to form a branch point. Yellow dashed and straight line in (G,H)

represent the vessel diameter and junctional area, respectively, measured in P1 skin.

(K) Quantitation of LEC proliferation after a 24h treatment with 10nM AM.
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In (A-K), data are represented as mean ± SEM. *p<0.05, **p<0.01.

See also Figure S6.
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Figure 6. Genetic titration of Adm influences Cxcr7−/− phenotypes
(A-B) Schematic of Adm genetic reduction experiment with expected and observed

Mendelian ratios. Cxcr7+/−;Adm+/− mice were bred with Cxcr+/−;Adm+/+ mice, resulting in

the following expected distribution: 25% Cxcr7+/+, 50% Cxcr7+/−, and 25% Cxcr7−/− with

50% of each Cxcr7 genotype being AM heterozygous. Observed number of animals was

statistically different from expected as judged by a chi-squared test (p=0.02).

(C-D) Schematic of Adm genetic increase experiment with expected and observed

percentage of survival of animals, n = 85. Observed number of animals (including

resorptions) was statistically different from expected as judged by a chi-squared test

(p=0.001).

(E-H) Representative images of JV and LS of e13.5 embryos from the gene reduction

experiment stained for podoplanin and Ki67. Scale bars, 100 μM.

(I) Quantitation of the LS:JV ratio in e13.5 embryos (n= 4-8 for each genotype).

(J) Percent proliferating cells in the LS (n= 4-8 for each genotype).

Data are represented as mean ± SEM. *p<0.05, **p<0.01 (One-way ANOVA).
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Figure 7. Genetic reduction of AM normalizes Cxcr7−/− cardiac proliferation and size
(A-G) (A,C,E,G): BrdU staining of cardiac tissue of e11.5 embryos from the gene titration

experiment. Exposure, 750 ms. Scale bars, 100 μM. (B,D,F,H): Arrows highlight

proliferating epicardium, and arrowheads highlight proliferating endocardium. Exposure,

250 ms. Scale bars, 100 μM.

(I) Percent proliferating cardiac cells in embryos from genetic reduction experiment. (n=3-5

for each genotype). Data are represented as mean ± SEM. *p<0.05 (One-way ANOVA).

(J-L) H&E-stained cardiac tissue of e13.5 animals from the genetic reduction experiment.

(n=3-5 for each genotype). Scale bars, 100 μM.
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