1,588 research outputs found

    Theoretical interpretation of scanning tunneling microscopy images: Application to the molybdenum disulfide family of transition metal dichalcogenides

    Get PDF
    We have performed ab initio quantum mechanical calculations to describe scanning tunneling microscopy (STM) images of MoS_2 and MoTe_2. These results indicate that the interpretation of the STM images of these and related materials depends sensitively on experimental conditions. For example, determining whether the maximum tunneling current correlates to the top atom (S or Te) or to the second‐layer atom (Mo) requires information on the tip‐sample separation. Based on these results we discuss some STM experimental procedures which would allow assignment of the chemical identity of STM spots with greater certainty

    Preliminary Studies Leading Toward the Development of a LIDAR Bathymetry Mapping Instrument

    Get PDF
    The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity

    Investigations and research in Nevada by the Water Resources Division, U. S. Geological Survey, 1982-83

    Full text link
    The Water Resources Division, U.S. Geological Survey, is charged with (1) maintaining a hydrologic network in Nevada that provides information on the status of the State\u27s water resources and (2) engaging in technical water-resources investigations that have a high degree of transferability. To meet these broad objections, 26 projects were active in Nevada during fiscal year 1982 in cooperation with 36 Federal, State, and local agencies. Total funds were 3,319,455,ofwhichStateandlocalcooperativefundingamountedto3,319,455, of which State and local cooperative funding amounted to 741,500 and Federal funding (comprised of Geological Survey Federal and cooperative programs plus funds from six other Federal agencies) amounted to $2,577,955 for the fiscal year.Projects other than continuing programs for collection of hydrologic data included the following topics of study: geothermal resources, areal ground-water resources and ground-water modeling, waste disposal, prehistoric hydrology, acid mine drainage, the unsaturated zone, stream and reservoir sedimentation, river-quality modeling, flood hazards, and remote sensing in hydrology. For each project, the objectives, approach, progress in fiscal year 1982, and plans for fiscal year 1983 are described herein. A total of 26 reports and symposium abstracts were published or in press during fiscal year 1982 as an outgrowth of project work in the State

    Dynamical decoupling and dephasing in interacting two-level systems

    Full text link
    We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubit's transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing due to fluctuations in the transition frequencies, thereby improving the coherence time of the entangled state. The coupling coherence is further enhanced when applying multiple refocusing pulses, in agreement with our 1/f1/f noise model. The results are applicable to any two-qubit system with transverse coupling, and they highlight the potential of decoupling techniques for improving two-qubit gate fidelities, an essential prerequisite for implementing fault-tolerant quantum computing

    Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit

    Full text link
    We demonstrate Mach-Zehnder-type interferometry in a superconducting flux qubit. The qubit is a tunable artificial atom, whose ground and excited states exhibit an avoided crossing. Strongly driving the qubit with harmonic excitation sweeps it through the avoided crossing two times per period. As the induced Landau-Zener transitions act as coherent beamsplitters, the accumulated phase between transitions, which varies with microwave amplitude, results in quantum interference fringes for n=1...20 photon transitions. The generalization of optical Mach-Zehnder interferometry, performed in qubit phase space, provides an alternative means to manipulate and characterize the qubit in the strongly-driven regime.Comment: 14 pages, 6 figure

    Optimal Time Utility Based Scheduling Policy Design for Cyber-Physical Systems

    Get PDF
    Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, optimal utility accrual scheduling design is needed for real-time cyber-physical domains. In this paper we design optimal utility accrual scheduling policies for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies

    First Science Results From SOFIA/FORCAST: Super-Resolution Imaging of the S140 Cluster at 37\micron

    Get PDF
    We present 37\micron\ imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, IRS 1, 2 and 3, and are nearly at the diffraction limit of the 2.5-m telescope. We also obtained a small number of images at 11 and 31\micron\ that are useful for flux measurement. Our images cover the area of several strong sub-mm sources seen in the area -- SMM 1, 2, and 3 -- that are not coincident with any mid-infrared sources and are not visible in our longer wavelength imaging either. Our new observations confirm previous estimates of the relative dust optical depth and source luminosity for the components in this likely cluster of early B stars. We also investigate the use of super-resolution to go beyond the basic diffraction limit in imaging on SOFIA and find that the van Cittert algorithm, together with the "multi-resolution" technique, provides excellent results
    • 

    corecore