1,605 research outputs found

    Minimal Interspecies Interaction Adjustment (MIIA): Inference of Neighbor-Dependent Interactions in Microbial Communities

    Get PDF
    An intriguing aspect in microbial communities is that pairwise interactions can be influenced by neighboring species. This creates context dependencies for microbial interactions that are based on the functional composition of the community. Context dependent interactions are ecologically important and clearly present in nature, yet firmly established theoretical methods are lacking from many modern computational investigations. Here, we propose a novel network inference method that enables predictions for interspecies interactions affected by shifts in community composition and species populations. Our approach first identifies interspecies interactions in binary communities, which is subsequently used as a basis to infer modulation in more complex multi-species communities based on the assumption that microbes minimize adjustments of pairwise interactions in response to neighbor species. We termed this rule-based inference minimal interspecies interaction adjustment (MIIA). Our critical assessment of MIIA has produced reliable predictions of shifting interspecies interactions that are dependent on the functional role of neighbor organisms. We also show how MIIA has been applied to a microbial community composed of competing soil bacteria to elucidate a new finding that – in many cases – adding fewer competitors could impose more significant impact on binary interactions. The ability to predict membership-dependent community behavior is expected to help deepen our understanding of how microbiomes are organized in nature and how they may be designed and/or controlled in the future

    Phenotypic responses to interspecies competition and commensalism in a naturally derived microbial co-culture

    Get PDF
    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL- 58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL- 48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended on nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold

    Speech Communication

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant 2 RO1 NS04332-11)U. S. Navy Office of Naval Research (Contract N00014-67-A-0204-0069

    Controller design with regional pole constraints - Hyperbolic and horizontal strip regions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76652/1/AIAA-1992-4401-149.pd

    Minimal Interspecies Interaction Adjustment (MIIA): Inference of Neighbor-Dependent Interactions in Microbial Communities

    Get PDF
    An intriguing aspect in microbial communities is that pairwise interactions can be influenced by neighboring species. This creates context dependencies for microbial interactions that are based on the functional composition of the community. Context dependent interactions are ecologically important and clearly present in nature, yet firmly established theoretical methods are lacking from many modern computational investigations. Here, we propose a novel network inference method that enables predictions for interspecies interactions affected by shifts in community composition and species populations. Our approach first identifies interspecies interactions in binary communities, which is subsequently used as a basis to infer modulation in more complex multi-species communities based on the assumption that microbes minimize adjustments of pairwise interactions in response to neighbor species. We termed this rule-based inference minimal interspecies interaction adjustment (MIIA). Our critical assessment of MIIA has produced reliable predictions of shifting interspecies interactions that are dependent on the functional role of neighbor organisms. We also show how MIIA has been applied to a microbial community composed of competing soil bacteria to elucidate a new finding that – in many cases – adding fewer competitors could impose more significant impact on binary interactions. The ability to predict membership-dependent community behavior is expected to help deepen our understanding of how microbiomes are organized in nature and how they may be designed and/or controlled in the future

    Phenotypic responses to interspecies competition and commensalism in a naturally derived microbial co-culture

    Get PDF
    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL- 58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL- 48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended on nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold
    • …
    corecore