288 research outputs found
The organophosphate pesticide chlorpyrifos affects form deprivation myopia
PURPOSE. The effects of the anticholinesterase organophosphate pesticide chlorpyrifos (CPF) on the refractive development of the eye were examined. Form deprivation was used to induce eye growth to address the previously reported relationship between organophosphate pesticide use and the incidence of myopia. METHODS. Chickens, a well-established animal model for experimental myopia and organophosphate neurotoxicity, were dosed with chlorpyrifos (3 mg/kg per day, orally, from day 2 to day 9 after hatching) or corn oil vehicle (VEH) with or without monocular form deprivation (MFD) over the same period. The set of dependent measures included the refractive state of each eye measured using retinoscopy, axial dimensions determined with A-scan ultrasound, and intraocular pressure. RESULTS. Dosing with CPF yielded an inhibition of 35% butyrylcholinesterase in plasma and 45% acetylcholinesterase in brain. MFD resulted in a significant degree of myopia in form-deprived eyes resulting from significant lengthening of the vitreal chamber of the eye. CPF significantly reduced the effect of MFD, resulting in less myopic eyes (mean refraction: VEH-MFD = -16.2 ± 2.3 diopters; CPF-MFD = - 11.1 ± 1.8 diopters) with significantly shorter vitreal chambers. Nonoccluded eyes were, on average, slightly hyperopic. Treatment with CPF for 1 week in the absence of MFD led to no significant change in ocular dimensions or refraction relative to controls. CONCLUSIONS. The use of form deprivation as a challenge suggests that CPF treatment interferes with the visual regulation of eye growth
Long-range coupling and scalable architecture for superconducting flux qubits
Constructing a fault-tolerant quantum computer is a daunting task. Given any
design, it is possible to determine the maximum error rate of each type of
component that can be tolerated while still permitting arbitrarily large-scale
quantum computation. It is an underappreciated fact that including an
appropriately designed mechanism enabling long-range qubit coupling or
transport substantially increases the maximum tolerable error rates of all
components. With this thought in mind, we take the superconducting flux qubit
coupling mechanism described in PRB 70, 140501 (2004) and extend it to allow
approximately 500 MHz coupling of square flux qubits, 50 um a side, at a
distance of up to several mm. This mechanism is then used as the basis of two
scalable architectures for flux qubits taking into account crosstalk and
fault-tolerant considerations such as permitting a universal set of logical
gates, parallelism, measurement and initialization, and data mobility.Comment: 8 pages, 11 figure
Human Neurobehavioral Effects of Long-Term Exposure to Styrene: A Meta-Analysis
Many reports in the literature suggest that long-term exposure to styrene may exert a variety of effects on the nervous system, including increased choice reaction time and decreased performance of color discrimination and color arrangement tasks. Sufficient information exists to perform a meta-analysis of these observations quantifying the relationships between exposure (estimated from biomarkers) and effects on two measures of central nervous system function: reaction time and color vision. To perform the meta-analysis, we pooled data into a single database for each end point. End-point data were transformed to a common metric of effect magnitude (percentage of baseline). We estimated styrene concentration from biomarkers of exposure and fitted linear least-squares equations to the pooled data to produce dose–effect relationships. Statistically significant relationships were demonstrated between cumulative styrene exposure and increased choice reaction time as well as increased color confusion index. Eight work-years of exposure to 20 ppm styrene was estimated to produce a 6.5% increase in choice reaction time, which has been shown to significantly increase the probability of automobile accidents. The same exposure history was predicted to increase the color confusion index as much as 1.7 additional years of age in men
Medical Students Educate Teens About Skin Cancer: What Have We Learned?
Skin cancer is a serious societal problem, and public awareness outreach, including to youth, is crucial. Medical students have joined forces to educate adolescents about skin cancer with significant impacts; even one 50-min interactive outreach session led to sustained changes in knowledge and behavior in a cohort of 1,200 adolescents surveyed. Medical students can act as a tremendous asset to health awareness public outreach efforts: enthusiastic volunteerism keeps education cost-effective, results in exponential spread of information, reinforces knowledge and communication skills of future physicians, and can result in tangible, life-saving benefits such as early detection of melanoma
Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of Long–Evans rats
Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000 ppm toluene by inhalation (6 hr/d, 5 d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m2) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000 ppm toluene for 4 weeks were tested approximately 1 year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1 year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic connections. These data provide experimental evidence that repeated exposure to toluene may lead to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the rat visual cortex
Spectral Classification and Luminosity Function of Galaxies in the Las Campanas Redshift Survey
We construct a spectral classification scheme for the galaxies of the Las
Campanas Redshift Survey (LCRS) based on a principal component analysis of the
measured galaxy spectra. We interpret the physical significance of our six
spectral types and conclude that they are sensitive to morphological type and
the amount of active star formation. In this first analysis of the LCRS to
include spectral classification, we estimate the general luminosity function,
expressed as a weighted sum of the type-specific luminosity functions. In the
R-band magnitude range of -23 < M <= -16.5, this function exhibits a broad
shoulder centered near M = -20, and an increasing faint-end slope which
formally converges on an alpha value of about -1.8 in the faint limit. The
Schechter parameterization does not provide a good representation in this case,
a fact which may partly explain the reported discrepancy between the luminosity
functions of the LCRS and other redshift catalogs such as the Century Survey
(Geller et al. 1997). The discrepancy may also arise from environmental effects
such as the density-morphology relationship for which we see strong evidence in
the LCRS galaxies. However, the Schechter parameterization is more effective
for the luminosity functions of the individual spectral types. The data show a
significant, progressive steepening of the faint-end slope, from alpha = +0.5
for early-type objects, to alpha = -1.8 for the extreme late-type galaxies. The
extreme late-type population has a sufficiently high space density that its
contribution to the general luminosity function is expected to dominate fainter
than M = -16. We conclude that an evaluation of type-dependence is essential to
any assessment of the general luminosity function.Comment: 21 pages (LaTeX), 7 figures (Postscript). To appear in the
Astrophysical Journal. The discussion of environmental dependence of
luminosity functions has been shortened; the material from the earlier
version now appears in a separate manuscript (astro-ph/9805197
An Analysis of Private School Closings
We add to the small literature on private school supply by exploring exits of K-12 private schools. We find that the closure of private schools is not an infrequent event, and use national survey data from the National Center for Education Statistics to study closures of private schools. We assume that the probability of an exit is a function of excess supply of private schools over the demand, as well as the school's characteristics such as age, size, and religious affiliation. Our empirical results generally support the implications of the model. Working Paper 07-0
CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development
Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5–6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT–PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT–PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration
- …