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Abstract

Studies of humans chronically exposed to volatile organic solvents have reported impaired visual 

functions, including low contrast sensitivity and reduced color discrimination. These reports, 

however, lacked confirmation from controlled laboratory experiments. To address this question 

experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or 

electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of 

the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for 

rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following 

exposure to 0, 10, 100 or 1000 ppm toluene by inhalation (6 hr/d, 5 d/wk) for 13 weeks. One week 

after the termination of exposure, the rats were implanted with chronically indwelling electrodes 

and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not 
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significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats 

were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were 

recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m2) range of flash luminance, b-wave 

amplitudes were significantly reduced at high stimulus luminance values in rats previously 

exposed to 1000 ppm toluene. A second set of rats, exposed concurrently with the first set, was 

tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, 

dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats 

previously exposed to 1000 ppm toluene. A third set of rats was exposed to the same 

concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000 ppm 

toluene for 4 weeks were tested approximately 1 year after the completion of exposure. No 

statistically significant reductions of ERG b-wave amplitude were observed in either set of rats 

exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, 

b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in 

the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-

bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1 

year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the 

bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic 

connections. These data provide experimental evidence that repeated exposure to toluene may lead 

to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, 

suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the 

rat visual cortex.

Keywords

toluene; retina; electroretinograms; visual function

 INTRODUCTION

Impaired visual function has been reported in human populations exposed to organic 

solvents, as described in several review articles (Benignus et al 2005, Fox 2015, Fox & 

Boyes 2013, Geller & Hudnell 1997, Gobba 2000, Gobba 2003, Gobba & Cavalleri 2003, 

Iregren et al 2002, Kishi et al 2000, Lomax et al 2004, Paramei et al 2004). The visual 

deficits reported have included impaired color discrimination, impaired visual contrast 

sensitivity, and several other measures. Color vision impairments have been reported 

following exposure to toluene (Campagna et al 2001, Cavalleri et al 2000, Muttray et al 

1999, Muttray et al 1995)), benzene (Lee et al 2007), perchloroethylene (Cavalleri et al 

1994, Gobba et al 1998), n-hexane (Issever et al 2002), styrene (Campagna et al 1996, 

Campagna et al 1995, Gong et al 2002, Iregren et al 2005, Kishi et al 2001), xylene (Lee et 

al 2013) and mixed organic solvents (Braun et al 1989, Gong et al 2003, Guest et al 2010, 

Paallysaho et al 2007). Visual contrast sensitivity, although investigated less frequently than 

color discrimination, also has been impaired following chronic exposure to styrene 

(Campagna et al 1996, Campagna et al 1995), (Castillo et al 2001, Mergler et al 1996), 

perchloroethylene (Schreiber et al 2002), and mixed organic solvents (Böckelmann et al 

2005, Boeckelmann & Pfister 2003, Broadwell et al 1995, Donoghue et al 1995, Frenette et 

al 1991, Gong et al 2003, Mergler et al 1991). Prenatal exposure to organic solvents also has 
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been associated with impaired color vision and visual contrast sensitivity in offspring of 

solvent-exposed pregnant women (Till et al 2001, Till et al 2003, Till et al 2005).

Persistent effects of solvents on vision are not uniformly observed. Several studies have 

found no differences in visual function between solvent exposed workers and controls 

(Nakatsuka et al 1992, Schäper et al 2004, Seeber et al 2009, Seeber et al 2005), athough the 

dose levels in these studies were generally below those of the positive outcome studies. 

Some of the studies of solvent exposure and visual function have been limited by small 

sample sizes, control groups that were not well matched for potential confounding variables, 

inability to conduct single or double-blinded testing, and potential motivational issues 

related to workplace disability compensation (Lomax et al 2004). The small magnitude of 

the deficits and variability within and between studies has led to skepticism as to the 

reliability and severity of the impairments observed (Lomax et al 2004, Paramei et al 2004).

Acute exposure to toluene, trichloroethylene or perchloroethylene reliably reduces the 

amplitude of visual evoked potentials (VEPs) of rats (Boyes et al 2003, Boyes et al 2007, 

Boyes et al 2009, Dyer et al 1988, Rebert et al 1989a, Rebert et al 1989b). In contrast, there 

has been little work from controlled laboratory experiments using animal models to assess 

visual toxicity from chronic or sub-chronic organic solvent exposure. One exception is a 

study of female Sprague-Dawley rats exposed to 300 ppm styrene vapor daily for 12 weeks. 

Compared to controls, styrene-exposed rats showed lower retinal dopamine content and 

fewer tyrosine hydroxylase immuno-reactive retinal amacrine cells (Vettori et al 2000). In 

other studies, repeated inhalation exposure of rats to toluene, trichloroethylene, 

perchloroethylene, or 1,1,1-trichloroethane revealed only minor changes or no changes in 

flash-elicited VEPs (Dyer et al 1984, Mattsson et al 1993, Mattsson et al 1998, Rebert et al 

1991) unless the dose levels were extremely high simulating inhalant abuse (Mattsson et al 

1990). New Zealand albino rabbits exposed (4h/d, 4d/w) to trichloroethylene vapors for 12 

weeks showed dose-dependent changes in VEP (Blain et al 1992), and increases of 

electroretinograms (ERG) a-wave and b-wave amplitudes (Blain et al 1994) that returned to 

baseline levels after termination of exposure. In summary, the experimental evidence to date 

has not identified a toxicological basis of chronic occupational solvent-induced visual 

deficits.

Toluene is one of the most commonly used substances in industry and commerce and is also 

one of the organic solvents for which there have been reports of visual impairments in 

exposed workers, including impaired color discrimination (Campagna et al 2001, Cavalleri 

et al 2000, Zavalic et al 1998a, Zavalic et al 1998b, Zavalic et al 1998c) and decreased 

contrast sensitivity (Donoghue et al 1995). The U.S. Environmental Protection Agency 

evaluated the scientific literature regarding toluene exposure as a component of setting a 

reference concentration (RfC) value intended to be protective over a lifetime of exposure 

EPA ((EPA) 2005). As a component of that analysis, a set of studies was identified which 

evaluated occupationally exposed populations and evaluated a series of neurological 

outcomes including visual function (their Table 1). From among the studies evaluating visual 

functions, those designated as a providing No Observable Effects Level (NOAEL) included 

Eller et al (Eller et al 1999) (duration 1–12 years, 20 ppm), Nakatsuka et al., (Nakatsuka et 

al 1992) (duration unspecified, 44–48 ppm), Neubert et al., (Neubert et al 2001) (duration 
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unspecified, 39 ppm); and Zavalic et al., (Zavalic et al 1998a) (16.21 ±6.1 years, 32 ppm). 

The IRIS document also identified studies with visual function assessments that provided 

Low Observable Effects Level (LOAEL) including: Eller et al., (Eller et al 1999) (>12 years 

exposure, > 100 ppm), Neubert et al., (Neubert et al 2001) (duration unspecified, 81 ppm), 

Vrca et al, (Vrca et al 1995) duration 21.4 ± 7.4 years, 40–60 ppm), and Zavalic et al., 

(Zavalic et al 1998a) (18.34 ± 6.03 years, 132 ppm). Therefore, occupational NOAEL values 

for visual deficits in workers exposed to toluene ranged from 20 – 39 ppm, or approximately 

240 – 500 ppm-years when expressed as cumulative exposure. Similarly, the levels of 

toluene exposure reported as LOAEL values for visual deficits ranged from 40 – 132 ppm, 

or approximately 850 – 2400 ppm-years.

The current studies sought to characterize persistent changes in visual functions following 

repeated inhalation exposure to toluene. These studies were conducted as a component of a 

larger integrated evaluation of potential neurotoxic effects of repeated toluene inhalation, 

which has been reported separately. Rats exposed to these atmospheres of toluene for 4 

weeks were found to have attentional deficits (Beasley et al 2012), and when exposed for 13 

weeks, to be delayed in acquisition of an appetitive lever-press response (Beasley et al 

2010). Other rats from the 13-week exposure cohort had increased markers of oxidative 

stress in frontal cortex, hippocampus, and cerebellum (Kodavanti et al 2015). In addition, 

gene expression profiles in the brains of rats exposed to toluene for 13 weeks differed from 

those of rats after acute exposure, and included differentially expressed genes in canonical 

pathways participating in oxidative phosphorylation, mitochondrial function and EIF2 

(Eukaryotic Translation Initiation Factor 2) signaling pathways (Hester et al 2011, Hester et 

al 2012).

The goals of the studies reported here were first: to investigate visual function in rats 

repeatedly exposed to toluene vapors in order to determine if the reports of persistent visual 

dysfunction observed in occupationally-exposed populations could be replicated in an 

animal model under experimentally-controlled conditions; second, to explore the dose-

response relationships, exposure-duration relationships and persistence of any deficits 

observed; and third, to try to identify the locus and nature of any deficits observed. In these 

studies, pigmented rats were exposed by inhalation to 0, 10, 100 or 1000 ppm toluene for 

either 4 or 13 weeks duration, and evaluated 2–6 weeks after the end of exposure, or 

approximately one year later. A pigmented strain of rats was used, rather than an albino 

strain as commonly employed in general toxicity testing, because albino rats lack ocular 

melanin making them vulnerable to light-induced retinal pathologies under standard 

laboratory conditions, and because albino animals have a number of visual system 

abnormalities and show relatively poor pattern-elicited VEPs (Boyes & Dyer 1983). In 

initial studies VEPs elicited with patterned stimuli were recorded. In all the studies retinal 

function was evaluated using electroretinograms (ERGs). Samples of retinal tissue were 

evaluated for immunohistochemical staining and quantification of retinal rod and M-cone 

photoreceptor densities. The results of these studies suggest that toluene exposure for 13 

weeks caused a lasting decrease in the amplitude of ERG b-waves, suggestive of impaired 

function of the inner nuclear layer of the retina which includes retinal on-bipolar cells. The 

ERG deficits were observed after only the highest concentration tested (1000 ppm) and the 

longest duration exposure (13 weeks), but persisted as long as one year after the termination 
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of exposure. These results provide experimental evidence confirming human observational 

studies that chronic exposure to high concentrations of organic solvents may be associated 

with persistent visual dysfunction.

 METHODS

The experiments described here were conducted as a component of a larger evaluation of the 

neurotoxic effects of repeated exposure to toluene. The experimental materials and 

procedures for animal housing and exposure are described in detail elsewhere (Beasley et al 

2012, Beasley et al in preparation, Beasley et al 2010). Therefore, those methods will be 

summarized only briefly here.

 Compound

Toluene (99.5% pure, ACS grade) (CAS # 108-88-3) was obtained from Sigma-Aldrich 

Chemical Co., St Louis, MO.

 Animals

The experimental subjects were male Long-Evans rats (LE) (Crl:(LE)BR) obtained from 

Charles River Laboratories (Portage, MI) at 64 or 67 days of age. Male rats were selected for 

study because there was no a priori reason to expect that there would be a gender-based 

difference in sensitivity of the visual system to toluene exposure, and it was thought to be 

preferable, given limited testing resources, to increase the sample size and statistical power 

of detecting changes in one sex, rather than diluting the power and increasing variability by 

studying both sexes. Animals were allowed to acclimate to the animal colony for 12 days 

prior to the beginning of the exposures. Exposures were conducted in four Hazelton 2000 

inhalation chambers, one for each of three toluene concentrations plus a control chamber for 

clean air. While in the inhalation chambers, rats were housed in individual wire mesh cages 

containing a stainless steel loft for environmental enrichment and to allow the rats an 

opportunity to move off of the wire mesh cage bottoms. Rats remained inside the chambers 

from Monday morning through Friday afternoon during exposure sessions, and were 

returned to polycarbonate individual cages with heat-treated pine chip bedding over the 

weekends. Rats had free access to drinking water through an automatic watering system at 

all times. Standard rat chow (PMI Nutrition International, Richmond, IN) was available ad 
libitum in the inhalation chamber during the times when there was no ongoing toluene 

exposure, but was removed during the exposure periods. Each rat received 20 grams of food 

per day on the weekends to control weight gain. After the completion of the exposure phase, 

rats were relocated to the animal colony and housed individually in polycarbonate cages 

with kiln-dried pine shaving bedding (Northeastern Products, Warrensburg, New York), and 

had ad libitum access to tap water and rat chow. The ambient temperature and relative 

humidity of the animal colony were 22±2°C and 50±10%, respectively, with a 12:12 hour 

light:dark cycle (lights on at 6:00 am). Illumination in the animal colony was maintained at 

approximately 325 lux measured 1 meter above the floor, well below the level of 

illumination associated with retinal pathology in albino rats. Because these experiments 

employed a pigmented strain of rats that is less susceptible to light-induced retinal 

degeneration than are albino strains, the level of ambient illumination was not expected to 
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influence the experimental results. Illumination of the interior of the exposure chambers was 

not measured directly, but was dimmer than that of the animal colony rooms.

The animal facility followed the guidelines of the National Institutes for Health for animal 

care, and was fully accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care International. All procedures were approved by the Institutional 

Animal Care and Use Committee (IACUC) of the USEPA National Health and 

Environmental Effects Research Laboratory (NHEERL), which ensured conformance with 

the 2004 National Research Council “Guide for the Care and Use of Laboratory Animals, 

Eighth Edition”, the Animal Welfare Act and Public Health Service Policy on the Humane 

Care and Use of Laboratory Animals.

 Inhalation Exposure

The inhalation facilities and procedures are described in detail elsewhere (Beasley et al 

2012, Beasley et al 2010) and will be summarized here briefly. The nominal concentrations 

of toluene in the four exposure chambers were 0, 10, 100 and 1000 ppm. Rats were 

randomly assigned to one of the groups and were exposed 6 hours/day, 5 days/week. In the 

first experiment the exposures were conducted for 13 weeks. In the second experiment the 

exposures were conducted for 4 weeks. All experimental dose groups were color coded and 

provided to the electrophysiology testing lab in a blinded fashion. The dose-color code was 

not broken until after all data were recorded and scored.

 Experimental Designs and Sample Sizes

 Experimental Set 1—Immediately following the 13 weeks of exposure, 10 male rats/

dose group were made available for visual function testing. The mean body weights of those 

rats were 473±7.6, 475±12.7, 485±8.1 and 478±7.5 g for groups of rats exposed to 0, 10, 

100 or 1000 ppm, respectively. These rats were subject to survival surgery for implantation 

of electrodes for VEP testing and subsequently tested in the VEP and ERG procedures. The 

VEP testing occurred 2–3 weeks after termination of exposure and the ERG testing occurred 

5–6 weeks after termination of exposure. Following ERG testing these rats were examined 

with an ophthalmoscope, sacrificed, and their eyes collected for immunohistochemistry as 

described below.

 Experimental Set 2—Approximately 1 year after the termination of the 13 weeks of 

exposure, a second set of rats (n=8–10/dose group) became available after they had 

completed a series of appetitive behavioral tasks as described by Beasley and co-workers 

(Beasley et al 2010). During behavioral testing, these animals were kept on a weight 

maintenance schedule with a target mean body weight of 85% (±10 g) of their weight 

measured on the last day of exposure. After completion of behavioral evaluations they were 

switched to ad libitum feed and at the time of visual testing had mean body weights of 

619.4±8.6, 614.9±15.1, 610.31.4, and 622.7±22.9 g for dose groups previously exposed to 0, 

10, 100 or 1000 ppm toluene, respectively. Because the VEP testing of the first set of rats 

showed no effects of toluene treatment, only ERGs assessments were conducted on this and 

subsequent sets of rats.
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 Experimental Set 3—A third set of 10 rats per dose group was available for testing at 

the completion of 4 weeks of exposure, 5 days/week. The nominal dose levels were again 0, 

10, 100 or 1000 ppm toluene and all aspects of the housing and care of the animals were as 

described above for the 13-week experiments. The ERG testing occurred 2–3 weeks after the 

completion of exposure. At the time of testing, rats had mean body weights of 529±7.5, 

526±12.4, 551±12.6, and 529±13.2 g, for dose groups treated with 0, 10, 100, or 1000 ppm 

toluene, respectively. After ERG testing was completed the rats were sacrificed and their 

eyes collected for immunohistochemistry as described below.

 Experimental Set 4—Finally, a fourth set of rats (n=9–10/dose group) was evaluated 1 

year after the 4 weeks of exposure at the completion of their behavioral assessments 

(Beasley et al 2012). As before, these rats were weight maintained during the behavioral 

evaluations, but returned to ad libitum feeding prior to ERG evaluation. Only controls and 

rats previously exposed to 1000 ppm toluene were evaluated in this set because only this 

dose level was affected in the group mean data of the preceding evaluations. The rats had 

mean body weights of 433±15.0 and 451±4.1 g, respectively at the time of ERG testing.

 Surgery

The first set of animals underwent survival surgery to implant indwelling electrodes for VEP 

recording. After the completion of the 13 weeks of exposure, and after rats were returned to 

the general animal colony housing, the rats designated for VEP testing were surgically 

equipped with chronic indwelling cranial electrodes as described previously (Boyes et al 

2003, Herr et al 1992). Briefly, rats were anesthetized (sodium pentobarbital; 50 mg/kg i.p.), 

placed in a stereotaxic device, and the skull was exposed for electrode implantation. The 

electrodes, constructed from stainless steel screws (00–90 × 1/16″) soldered to Nichrome 

wires, were implanted into the skull in following locations: 1 mm anterior and 4 mm lateral 

left of lambda over the primary visual cortex; and 2 mm anterior and 2 mm lateral left and 

right of bregma for ground and reference electrodes, respectively. The electrode assembly 

was encased in dental acrylic and the wound closed. Approximately one week was allowed 

for surgical recovery before VEP testing. The subsequent sets of rats did not experience 

surgery or VEP testing.

 VEP Stimuli

The stimuli to elicit pattern VEPs were presented on a video monitor located outside of a 

Faraday cage. The stimuli were generated with the green gun of the video monitor using a 

computer-based system described elsewhere (Boyes et al 2003, Hamm et al 2000). The 

stimulus generation system was calibrated to achieve a linear relationship between video 

input signal voltage and screen luminance. Mean stimulus luminance was calibrated to be 50 

lux measured at the position of the rat’s eye. Other than the stimulus screen, the recording 

chamber was dark. The stimulus patterns were vertical gratings with a sinusoidal spatial 

luminance profile and a spatial frequency of 0.16 cycles per degree visual angle. The 

stimulus temporal modulation was either pattern on/off (appearance / disappearance) or 

pattern reversal (phase alternation) modulated at 4.55 Hz. Stimulus peak contrast values 

included 0, 2, 4, 6, 8, 12, 16, 24, 32, 48 and 64 %. Thus, a series of 22 VEP waveforms was 

recorded from each subject (2 temporal modulation modes multiplied by 11 levels of 
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contrast). The different stimulus conditions were presented in a random order with a 1 

minute adaptation period between tests during which the non-patterned mean luminance 

screen was presented. A complete recording session for an individual rat took approximately 

60 min. Testing commenced from 8:00 am until approximately 4:00 pm daily.

 Evoked Potential Recording

Electrophysiological potentials were recorded using a system described in Hamm et al., 

(2000): amplified (10K), bandpass filtered (0.1–1000 Hz), and sampled at a rate of 1.2 KHz 

in 5 sec epochs. Awake rats were restrained in a flexible plastic tube with their head 

exposed, secured to a rigid plastic tray, and placed inside the Faraday cage. Body 

temperature was monitored during the procedure. Pupils were not dilated in order to 

maintain optimal refraction for pattern perception. The electrode headsets were connected to 

a cable leading to the amplifiers, and the rats were placed facing the screen of the video 

monitor with their eyes approximately 15 cm from the monitor. The Faraday cage and the 

video monitor were covered with a black felt cloth so that the only source of light for the rat 

was the video monitor screen. Each rat was given a few minutes to adapt while viewing a 

mean luminance non-patterned screen, after which the VEP recordings began. Each VEP 

was constructed from the average of 20 5-sec epochs. Each averaged waveform was 

submitted to a spectral analysis. The spectral amplitude was measured at the rate of the 

visual pattern modulation (F1) and twice that rate (F2). For pattern reversal modulation only 

F2 was analyzed because this stimulus modulation yields no F1 response. The waveforms 

recorded to the non-patterned mean luminance screen (0 % contrast) were used to indicate 

the recording noise levels.

 Contrast Amplitude Functions

A linear relationship has been reported between the amplitude of pattern VEPs and the log 

of visual pattern contrast (Silveira et al 1987). The zero-amplitude intercept of this function 

has been interpreted as equivalent to perceptual contrast threshold, and the slope of the 

function as contrast-gain (Bobak et al 1988). Contrast sensitivity is typically expressed as 

the reciprocal of contrast threshold, and VEP amplitude log-contrast functions have been 

used to define contrast sensitivity functions in rats (Silveira et al 1987). Because reduced 

visual contrast sensitivity has been reported in humans exposed to organic solvent vapors, 

we hypothesized that the intercept of the contrast amplitude functions would be increased 

after repeated exposure to toluene.

In the experiment reported here VEP amplitude log-contrast functions were generated from 

the F2 amplitudes for each rat. Amplitude values that were less than the mean noise level + 2 

SEMs were considered indistinguishable from noise and were omitted from the linear 

regression determinations. Linear regressions were fit to the remaining data from each 

individual rat using SigmaPlot (SigmaPlot for Windows Version 11.0, Systat Software, Inc., 

San Jose, California), and the slope and intercept values were defined.

 Electroretinograms

Electroretinograms were recorded using an Espion E2 ColorDome™ system (Diagnosys, 

LLC, Lowell, MA) which was custom modified by the manufacturer to replace the standard 
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blue LED stimulus lights with UV LEDs that were better matched to the spectral sensitivity 

of rat Scone photoreceptors, which are responsive to UV wavelengths of radiation (Jacobs et 

al 2001). The system retained the other standard stimulus capabilities. Visible wavelengths 

of light were calibrated using a photometer (model DR-2550-1, Silicon Detector Probe 

Model and Calibration Module model DR-2250-2B, photometric filter, Gamma Scientific, 

San Diego, CA). The UV radiation was calibrated with a radiometer (model IL1700, 

SED005 detector, WBS320 filter, International Light Technologies, Newbury, MA). The 

spectral power distribution of both visible and UV wavelengths was measured with a 

spectroradiometer (model RPS900, International Light Technologies, Newbury, MA). All 

the photometric and radiometric instruments were calibrated according to the manufacturer’s 

specifications.

The ERG recording session for Experimental Set 1 included collecting a dark-adapted 

(scotopic) flash series, a UV flicker series, and a green flicker series. After Set 1 was 

completed, a light-adapted photopic flash series was included in subsequent testing. The 

dark-adapted flash series measured the function of rod photoreceptors (a-wave) and retinal 

on-bipolar neurons (b-wave) (Jamison et al 2001, Karwoski & Xu 1999, Robson et al 2004, 

Stockton & Slaughter 1989, Tian & Slaughter 1995). The UV flicker series reflected the 

function of S-cones, and the green flicker series reflected the function of M-cones (Eells et 

al 2003, Viswanathan et al 2002). The light-adapted flash series reflected cone 

photoreceptors (a-wave) and on-bipolar cells (b-wave) (Bush & Sieving 1994, Rangaswamy 

et al 2004, Wu 2010).

 Scotopic Flash ERG—Dark-adapted flash ERGs were recorded first in the series of 

ERGs. Rats were housed overnight prior to ERG recording in the ERG testing laboratory, 

which was designated as a satellite animal housing facility and inspected and approved for 

overnight housing by the NHEERL Institutional Animal Care and Use Committee. The 

testing room was painted black, sources of stray light eliminated, and the room kept dark 

overnight. Animals were housed overnight in individual plastic cages with standard bedding 

and ad libitum access to food and water. All animal handling and preparations for recording 

the next day were accomplished under dim red darkroom safelights. Each rat was 

anesthetized with an i.p. injection of a combined solution of ketamine (80 mg/kg) and 

xylazine (8 mg/kg), with supplemental dosing as needed based on responses to a mild tail 

pinch. Once the rat was anesthetized, the left eye was given eye drops of ophthalmic 

solutions of proparacaine HCl (0.5%), tropicamide (0.75%) and phenylephrine HCl (2.5%). 

The right eye was taped closed and whiskers were trimmed to prevent interference with the 

electrodes. The animal was placed in a flexible plastic cone with the head exposed, equipped 

with a rectal thermometer to monitor body temperature, placed on a circulating warm water 

blanket and secured to a rigid plastic tray which was located under the ganzfeld of the 

ColorDome™. Subdermal needle electrodes were placed in the back of the neck for 

grounding and at the lateral canthus of the left eye for reference. The active electrode was a 

loop of wire (10% iridium/90% platinum) placed in contact with the cornea of the left eye 

using a micromanipulator. The cornea was kept moist throughout the session with drops of 

an ophthalmic solution of Isotears™ (Allergan, Inc., Irvine, CA). Suitable recording 

conditions were verified with the impedance meter of the system control computer, which 

Boyes et al. Page 9

Neurotoxicology. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was located in the adjacent room. Beginning with the dimmest flash, single flash ERGs were 

recorded at incrementing half-log steps over a range of 5 log luminance values. The dark 

adaptation time between dim flashes of light was 30 s and 1 min between flashes greater 

than 0.1 cd*s/m2. ERG signals were band-pass filtered (1.25 – 300 Hz) and sampled at a rate 

of 1000 Hz. Each sweep included 10 ms pre-stimulus baseline and 300 ms post-stimulus 

time. Peaks were scored automatically for a-waves and b-waves, with subsequent manual 

inspection and verification. Parameters analyzed included the peak latencies of the a-wave 

and b-wave, the a-wave amplitude (measured baseline to peak) and the b-wave amplitude 

(measured trough-to-peak from a-wave to b-wave). In addition, an alternative measurement 

of a-wave amplitude was obtained at 10 ms after the flash, which was thought to better 

reflect the function of only rod photoreceptors prior to the onset of neural activity from other 

retinal cells (Fox et al 2008, Jamison et al 2001).

For the ERG b-wave amplitude values, Naka-Rushton functions (Evans et al 1993, 

Gangadhar et al 1989, Severns & Johnson 1993) were fit to the amplitude vs log flash 

luminance data using the nonlinear regression sigmoidal 3-parameter Hill function of 

SigmaPlot (Systat Software, Inc., San Jose, CA), which is equivalent to the Naka-Rushton 

Equation. The general form of the Naka-Rushton Equation is:

in which I refers to stimulus luminance (cd*s/m2); R refers to the ERG amplitude (μV); 

Rmax refers to the maximum asymptotic amplitude (interpreted to reflect the total area of 

functioning retina); K refers to the half saturation constant (interpreted as retinal sensitivity), 

and n is a constant controlling the slope of the function.

 UV Flicker ERGs—After the dark flash protocol was completed, a UV flicker series 

was conducted. The stimuli were generated by UV LEDs and had a sharp uni-modal 

spectrum between about 340–400 nm with a peak wavelength of 370 nm. The ERG 

procedures were modeled after those of Eells and co-workers (Eells et al 2003). The UV 

stimuli were flickered at 21 Hz, which is above the temporal response limit of rod 

photoreceptors (Goto et al 1998, Moses et al 1987). In Experimental Set 1, four levels of 

flicker irradiance were used. These were reduced in subsequent experiments to three UV 

stimulus levels, presented in dim-to-bright order, which were calibrated with the 

spectroradiometer to provide peak irradiance at 370 nm of 0.7, 2.4 and 7.8 μW/cm2, 

respectively. Concurrently, a steady green background light (515 nm, 0.93 μW/cm2) was 

delivered to suppress potential contribution of M-cones. A 30 s adaptation time to the steady 

green stimulus alone was provided prior to each recording. Electrophysiological data were 

bandpass filtered (10–30 Hz) and sampled at 1000 Hz. Each sweep included 2000 ms of 

data, and ERG recordings were averaged over 20 consecutive sweeps. The resulting 

waveforms had a sinusoidal shape with the primary frequency at the stimulus rate (i.e. 21 

Hz). The data were transferred to a central computer network where they were subjected to 

spectral analysis (PROC Spectra, SAS Institute Inc., Cary NC) and the spectral amplitude at 

21 Hz was taken as the dependent measure for statistical analysis.
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 Green Flicker ERGs—The procedures to record green flicker ERGs were analogous to 

the UV flicker series, except that the green LEDs were flickered while the UV stimulus was 

held steady. The green LEDs had a uni-modal spectrum between approximately 480–560 nm 

with a peak of 520 nm. In Experimental Set 1, nine levels of green flicker were used, but this 

was reduced in subsequent experiments to 4 levels of half log steps between 1 and 30 cd/m2 

because the 4 levels gave a suitable intensity response function. The steady UV background 

was 10 μW/cm2/nm at 370 nm. Other aspects of the green flicker ERG recording and 

analysis were identical to those for the UV flicker.

 Photopic ERG—For the Experimental Set 2 and afterward, a photopic ERG series was 

added at the conclusion of the green flicker ERG recordings. To record photopic ERGs a 

steady green adaptation light of 40 cd/m2 was turned on to saturate rod photoreceptors, and a 

series of white flashes of 0.3, 1, 3 and 10 cd*s/m2 was presented in sequence. An adaptation 

time of 30 sec was provided prior to the two dimmer flashes and of 1 min prior to the two 

brighter flashes. The other aspects of the recording and data scoring were identical to the 

dark-adapted (scotopic) flash series.

 Ophthalmoscopic Examination

At the conclusion of ERG recordings, while the pupils were dilated, both eyes of each rat 

were examined by an ophthalmologist (JCM) using an indirect ophthalmoscope. The 

observer was not aware of the treatment group of any subject at the time of assessment. Any 

clinically evident abnormalities in the posterior segment of the eye were noted. Due to 

scheduling conflicts, only the rats from Experimental Set 1 and Experimental Set 4 were 

examined.

 Immunohistological Evaluation of Photoreceptors

Forty rats exposed to control air or to toluene for either 4 or 13 weeks were subject to 

immunohistochemical assessment. One eye was enucleated and placed in 4% 

paraformaldehyde fixative at 4°C for approximately 24 hrs and then transferred to 0.1M 

phosphate buffer prior to transfer to the University of Wisconsin School of Medicine and 

Public Health. Just prior to enucleation, 39 of the 40 eyes had a small cautery mark placed 

near the corneal limbus at the 12:00 o-clock meridian for purposes of orientation. The eyes 

were cut open coronally with the aid of a dissecting microscope. The crystalline lens was 

taken out of the eye and a 2 mm trephine was used to remove a disk of inferior retina. The 

sampling location was based on the observations of Szél and Röhlich (Szél & Röhlich 1992) 

who found similar populations of S- and M-cones in 4 mid-peripheral regions of the retina. 

The density of S-cones was virtually the same in all areas and there was a slightly higher 

density of M-cones in the inferior region. The superior-most part of the trephined retinal 

disk was located approximately 0.5–1 mm inferior to the optic nerve. Another 2 mm disk of 

retina was removed from an unknown retinal location in the single eye that was not marked. 

Processing difficulties were encountered in preparing another eye and, so, a second 2 mm 

disk of retina was removed from the superior retina and used for data analysis.

The retina sections were processed in the University of Wisconsin Electron Microscopy 

Laboratory. Samples were dehydrated in a graded ethanol series, 30%, 50%, 70%, 80%, 
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90%, 95%, 100% for 10 min each on a rotator (100% - 3X-10 min). The samples were then 

transferred to a 50/50 mixture of unaccelerated (omitting part “C”) Durcupan epoxy resin 

and 100% ethanol for 12 hrs. Next, the samples were transferred to 100% unaccelerated 

Durcupan epoxy resin and placed in a 60°C oven on a rotator for 4 hrs. The samples were 

then transferred to accelerated Durcupan epoxy resin and infiltrated in a 60°C oven on a 

rotator. The accelerated resin was exchanged 3X every 45 min. Finally, the samples were flat 

embedded between two glass microscope slides pre-treated with a releasing agent (Rain-X™ 

windshield treatment) and polymerized in a 60°C oven for 24 hrs. After polymerization, one 

of the glass slides was removed and the embedded specimens were viewed under a light 

microscope for orientation. Following orientation, the specimens were glued to a cylinder of 

polymerized Durcupan resin and cut with a Leica EM UC6 ultramicrotome (Leica; Wetzlar, 

Germany) into 1 μm sections using a Diatome diamond histology knife (Diatome; Hatfield, 

PA). The sections were placed on glass slides and dried on a hot plate. One tissue section on 

each slide was stained with Richardson’s stain for examination of the tissue before 

immunohistochemistry (IHC) was performed.

The IHC procedure was performed on all 40 eyes using antibodies to rods and M- cones. 

Prior to immunoreaction, the Durcupan epoxy resin was removed according to a method 

described previously (Mayor et al 1961). Once re-hydrated, the sections were incubated in a 

trypsin digest at 37°C for 8 min. After cold double-deionized H2O rinses, the sections were 

incubated with a mouse monoclonal antibody for rhodopsin staining or a rabbit polyclonal 

antibody for M/L cone opsin staining (both at 1:2000, catalog numbers MAB5316 and 

AB5405, respectively, Chemicon/Millipore; Billerica, MA) overnight at 4°C. After washing, 

the sections were incubated with biotinylated anti-mouse IgG and biotinylated anti-rabbit 

IgG, respectively, for 30 min and then incubated for 1 h at room temperature with avidin-

biotin complexes (Vectastain ABC Kit Elite PK-6102 with the rhodopsin primary and 

Vectastain ABC Kit Elite PK-6101 with the cone opsin primary, Vector Laboratories; 

Burlingame, CA). Following washes in phosphate-buffered saline and Tris buffer, the bound 

antibodies were revealed for both rhodopsin and M-cones by incubation with 3, 3-

diaminobenzidine tetrahydrochloride (Sigma-Aldrich; St Louis, MO) for 2 and 6 min, 

respectively. Tissue sections stained for M-cones were counterstained with Richardson’s 

stain (30 s at approximately 60°C) prior to cover slipping.

The tissue sections were viewed with light microscopy (Olympus BH-2; Olympus Corp; 

Lake Success, NY). One tissue section from each slide stained with Richardson’s stain was 

chosen and then photographed at 100x (oil immersion) magnification with a Nikon E5000 

digital camera (Nikon; Chiyoda-ku, Tokyo, Japan). Four photographs from each tissue 

section chosen were uploaded to NIH ImageJ software. Rods and M-cones were hand 

counted in ImageJ. Rods were counted from one of the four pictures for each tissue and M-

cones were counted from all four photos and added. In all but one sample, at least 2000 

photoreceptors were counted. Staining on slides was scored subjectively (scale range from 

0+ to 3+) using a light microscope (Olympus CH-2; Olympus Corp; Lake Success, NY) at 

10x magnification for analysis.
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 Statistical Analysis

Electrophysiological data were analyzed statistically using the GLM procedure of SAS 

(SAS, Software release 9.1, Cary NC). For the data from VEP experiments, statistical 

analysis was conducted on VEP F2 amplitudes using the dose as a between-subjects factor, 

and the pattern temporal modulation and contrast as within-subjects repeated measures. In 

addition, the slope and intercept of contrast amplitude functions fit to the data from 

individual subjects were analyzed separately using dose as a between-subjects factor.

For scotopic and photopic ERG data the amplitude and latency of both a-waves and b-waves 

were analyzed using dose as a between-subjects factor and flash luminance as a within- 

subjects repeated factor. In addition, the Rmax and K parameters derived from Naka-Rushton 

functions fit to the scotopic ERG data from individual rats were combined across all the data 

sets and analyzed using dose as a between-subjects factor.

For UV and green flicker ERG data, the amplitude derived from the spectral analysis at the 

stimulation rate (F1) was used as a dependent measure. The independent variables were dose 

group, a between-subjects factor, and stimulus luminance or radiance, within-subjects 

factors.

It is important to consider the problem of multiple dependent measures artificially inflating 

the probability of detecting a statistically significant difference between the treatment groups 

by chance alone. For the electrophysiological measures, where the ability to collect multiple 

dependent measures make this issue particularly important, the issue was addressed by 

designating the initial data set from the 13 week study as a hypothesis generation 

experiment, in which all dependent variables were evaluated at a probability level of α=0.05, 

but none of the conclusions were considered definitive until replicated (Muller et al 1984). 

The subsequent experiments involved independent sets of test subjects, and were designated 

for replication of the findings of the first set (even though the exposure durations and times 

after exposure differed between sets). Positive results in the hypothesis generation 

experiment were thereby confirmed in the subsequent sets of data for which only previously 

significant results were assessed. The probability level for replication was designated as 

α=0.05.

 RESULTS

 Exposure and general state of the rats

Data regarding the actual toluene concentrations and other conditions monitored in the 

exposure chambers are presented in Beasley et al. (Beasley et al 2010). Briefly, the mean 

(±SD) concentrations measured during the 13 week study were 10 (±1.4), 97 (±7), and 995 

(±43) ppm for nominal concentrations of 10, 100 or 1000 ppm respectively. During the 4-

week study the mean (±SD) measured concentrations in the inhalation chambers were 9.9 

(±1.6), 100 (±5), and 1005 (±43) ppm for nominal concentrations of 10, 100 or 1000 ppm, 

respectively (Beasley et al 2012). No animals were observed to show signs of intoxication or 

distress during the exposures, and there were no significant differences in body weight 

between the treatment groups during or after exposure in any of the experiments.
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 Visual Evoked Potentials and Contrast Sensitivity Functions

 Experimental Set 1—Two rats died prior to testing for reasons unrelated to toluene 

exposure (one exposed to 0 ppm, and one exposed to 1000 ppm group). In addition, the data 

were eliminated from 6 rats for reasons that included problems with the electrodes, headsets 

or excessively noisy recordings (n=1 exposed to 0 ppm, n=2 exposed to 10 ppm; n=2 

exposed to 100 ppm), and failure to produce VEP amplitudes above twice the measured 

noise level (n=1 exposed to 0 ppm). The resultant sample sizes for VEP analyses were n = 7 

(0 ppm), n = 8 (10 ppm), n = 8 (100 ppm) and n = 9 (1000 ppm). The overall shape of the 

resulting visual evoked potential waveforms and the spectral analysis of those waveforms 

appeared qualitatively similar to those reported previously (Boyes et al 2007). VEP F2 

amplitude data were analyzed using analysis of variance with one between subjects factor 

(dose) and two repeated within-subjects factors: stimulation type, (i.e. on/off or pattern 

reversal) and contrast. There was no statistically significant effect of dose (F(3,28) = 1.44, p 

= 0.2528), no significant stimulation type by dose interaction (F(3,28) = 0.83, p=0.4873), no 

significant contrast by dose interaction (F(30,280) = 1.17, p=0.3374), and no significant 

interaction of dose by stimulation type by contrast (F(30,280) = 1.10, p=0.3571).

The amplitude of the pattern reversal VEP F2 was plotted as a function of log contrast for 

the different treatment groups receiving control air or toluene for 13 weeks in order to assess 

contrast thresholds and contrast gain (Figure 1). The amplitude/log-contrast functions were 

approximately linear, as has been reported previously (Silveira et al 1987). The zero-

amplitude intercept values of these functions were 2.24 ± 0.11, 2.43 ± 0.26, 2.21 ± 0.26, and 

2.27 ± 0.20 (mean % contrast ± SEM) for groups treated with 0, 10, 100 or 1000 ppm, 

respectively. These intercept determinations corresponded to contrast sensitivity values of 

45.4 ± 2.2, 45.3 ± 5.9, 50.8 ± 7.3, and 47.8 ± 5.6 (mean ± SEM) (units are 1/contrast), 

respectively. The slope values for these functions were 10.0 ± 1.7, 10.4 ± 1.4, 6.3 ± 1.0 and 

8.7 ± 1.9 (μV/log(% contrast)), respectively. There were no statistically significant changes 

between the dose groups for either contrast thresholds (F(3,28) = 0.2, p=0.8951) or slope 

(F(3,28) = 1.41, p = 0.2617) of the VEP amplitude-log contrast functions.

 Electroretinograms: Scotopic Flash Series

 Experimental Set 1—A sample ERG series recorded from one control rat and one rat 

treated with 1000 ppm toluene for 13 weeks is shown in Figure 2. Both the a-wave and b-

wave were identified. The waveforms grew in amplitude and the peaks decreased in latency 

with increasing flash luminance. The mean b-wave amplitude of each of the dose groups is 

presented in Figure 3A. Naka-Rushton functions fit to the group mean data are also 

presented. The group treated with 1000 ppm toluene had lower maximal b-wave amplitudes 

at the higher flash luminance values than did the other dose groups. Statistical analysis of the 

ERG data revealed no significant changes in a-wave peak latency or amplitude, a-wave 

amplitude measured at 10 ms, or b-wave latency. There was no statistically significant main 

effect of treatment on b-wave amplitude (F(3,33)=2.22, p=0.1044). There was, however, a 

statistically significant interaction between flash illuminance and toluene treatment on the b-

wave amplitude (F(30,330)=1.92 p=0.0034 (unadjusted); p=0.0453 (Huynh-Feldt Epsilon 

adjustment). Step-down contrast comparisons showed significant differences between the 

dose groups at the two highest values of flash illuminance (both F(3,33) > 3.0, both p< 
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0.03). The reduction of maximal b-wave amplitude observed in Experiment 1 was 

considered as an exploratory observation until confirmed in a second experiment.

 Experimental Set 2—The ERG b-wave amplitudes of rats treated with toluene for 13 

weeks and tested approximately one year after the termination of testing are presented in 

Figure 3B. Naka-Rushton functions fit to the group mean data are also presented. As noted 

in Experimental Set 1, the b-wave amplitudes of animals treated with 1000 ppm toluene 

were lower than those of the other dose groups at the higher values of stimulus luminance. 

There was no statistically significant main effect of toluene treatment (F(3,33)=1.36 

p=0.2721), but again there was a statistically significant interaction between flash 

illuminance and toluene treatment (F(30,330)=2.22 p=0.004 (unadjusted); p=0.0520 

(Huynh-Feldt episilon adjusted). Step down contrasts showed no statistically significant 

differences among the 4 dose groups at individual flash illuminance values. An analysis 

comparing only the groups exposed to control air and 1000 ppm toluene showed significant 

differences of the b-wave amplitudes between groups at the highest five values of flash 

illuminance (all F(1,17) > 6.0 all p < 0.02). The reduction of b-wave amplitude at higher 

levels of flash illuminance following 1000 ppm toluene exposure in Experimental Set 2 was 

considered to be confirmation of the result observed in Experimental Set 1.

 Experimental Set 3—The ERG b-wave amplitudes recorded from rats exposed to 

toluene for 4 weeks and tested two weeks later are presented in Figure 4A. As observed in 

the data from Experimental Sets 1 and 2, the ERG b-wave amplitudes of rats treated with 

1000 ppm toluene were lower than those of the other dose groups at the higher values of 

stimulus luminance. The apparent difference was not statistically significant, however. There 

was no significant main effect of toluene treatment (F(3,34) = 0.98 p=0.4115) and no 

significant interaction between toluene treatment and flash luminance (F(30,340) = 0.73 

p=0.8464 (unadjusted).

 Experimental Set 4—The ERG b-wave amplitudes recorded from rats treated with 

toluene for 4 weeks and recorded approximately 1 year later showed a pattern of results 

different from the previous assessments. Animals observed to have cataracts were removed 

from the ERG dataset, yielding n=7, for both groups. ERG b-wave amplitudes of the 1000 

ppm dose group were not statistically different from control (Figure 4B). The main effect of 

dose was not statistically significant (F(1,12) = 2.43 p=0.1448). The statistical test of the 

dose by flash illuminance interaction was not statistically significant after adjusting for the 

non-sphericity of the interaction matrix (F(10,120) = 0.93 p=0.5067 (unadjusted), p=0.4072 

(Huyng-Feldt epsilon adjusted).

 Electroretinograms: UV and Green Flicker and Photopic Flash ERG

There were no significant effects of exposure to toluene observed in the UV or Green flicker 

data or the photopic flash data from the experimental data sets evaluated (data not shown).

 Ophthalmoscopy

The eyes examined ophthalmoscopically were scored as normal or abnormal and any 

abnormalities were described. Among the lesions described in the 1,000 ppm group of 
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Experimental Set 1 were bilateral optic nerve atrophy (n=1), and slight or pronounced 

degeneration of the retinal pigment epithelium (RPE) (n=3). Rats treated with 100 ppm for 

13 weeks also showed slight bilateral RPE degeneration (n=2). In the rats from Experimental 

Set 4, who were approximately 1 year older than the first set, both controls (n=2) and high 

dose rats (n=3) were judged to have early stage or fully developed cataracts, but no retinal 

lesions were noted. The ERG data from subjects observed to have cataracts were removed 

from the ERG data set.

 Immunohistological Evaluation of Photoreceptors

An example of 3+ anti-rhodopsin staining is shown in Figure 5A (note that this is an oblique 

section used to demonstrate the contrast between the positive outer segments and the 

negatively stained inner segments). Evaluation of the inner and outer segments of 

photoreceptors was selected, instead of counting photoreceptor nuclei in outer nuclear layer 

(ONL), because the antibodies used here only label the outer segments. The inner nuclear 

layer was not examined. The density of rods is plotted in Figure 5B. Figure 6A illustrates 3+ 

anti-M-cone staining. Counterstaining with Richardson’s (blue) shows the rods. Such 

sections were employed for the quantitative photoreceptor density assessments. The IHC 

sections were graded by an observer unaware of the dose condition using a scale of 0 (no 

IHC staining activity) to 3+ (marked IHC staining activity). All of the sections except one 

(19–7, 13 week, 0 ppm toluene) had strong (3+) staining with anti-rhodopsin antibody. A 2+ 

staining was noted in the one exception. Similarly, for the anti-M-cone antibody reaction, 

nearly all of the retinas were graded as having 3+ staining. The only exceptions to the latter 

were animals numbered 19-Y, 13 week, 0 ppm (2+ staining); 20-Y, 13 week, 0 ppm (1+ 

staining); 11-G, 4 week, 100 ppm (1+ staining); 17-G, 4 week, 100 ppm (2+ staining); and 

12-R, 4-week, 1000 ppm (2+ staining). The density of M-cones is plotted in Figure 6B. No 

dose-related changes in the density of rod (Figure 5B) or M-cone (Figure 6B) photoreceptors 

were observed

 DISCUSSION

The studies reported here observed dose-related and persistent reduction of the ERG b-wave 

maximum amplitude following 13 weeks of toluene inhalation. The b-wave reduction was 

observed in Experiment 1 for rats exposed to 1000 ppm toluene for 13 weeks and tested a 

few weeks after termination of exposure. This observation of a reduced b-wave amplitude at 

high levels of flash luminance was confirmed in Experiment 2 in rats exposed to 1000 ppm 

toluene for 13 weeks and tested 1 year after exposure. This result was observed in an 

exploratory study in which all the dependent variables were analyzed at the level of α=0.05, 

and then repeated in a second confirmatory study.

Rats exposed for 4 weeks and tested a few weeks after showed a trend in the same direction 

of reduced ERG amplitudes, but the reductions were not statistically significant. Statistically 

significant changes in ERG b-wave amplitude were not observed one year after 4 weeks of 

toluene exposure. The shorter duration exposure (4 weeks) was apparently insufficient to 

produce the retinal dysfunction that was observed after longer duration exposure (13 weeks). 

The deficits were only observed after exposure to 1000 ppm toluene and not after exposure 
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to lower concentrations. Therefore, the persistent ERG deficits were dependent on both the 

concentration and duration of toluene exposure.

In occupational studies, populations of workers that have been reported to have visual 

deficits were exposed typically to higher concentrations than were those in negative studies 

((EPA) 2005), although there have been reports of impairments in populations with 

exposures below the then current occupational limits (Iregren et al 2005). Analysis of 

occupational exposure to styrene (Benignus et al 2009), or toluene (Cavalleri et al 2000) 

showed a concentration-duration relationship in which the magnitude color vision 

discrimination errors increased as a function of the product of concentration x duration of 

exposure. As discussed previously, NOAEL values for visual deficits in workers exposed to 

toluene ranged from 20 – 39 ppm, or 240 – 500 ppm-years, and LOAEL values ranged from 

40–132 ppm, or approximately 850 – 2400 ppm-years ((EPA) 2005). The occupational 

literature in many cases is compromised, however, by limitations including limited sample 

sizes, control groups inadequately matched for potential confounding variables, lack of 

longitudinal measures of exposure, lack of baseline measures prior to exposure, small effect 

sizes, and high divergence across studies of color confusion scores using the Lanthony 

D-15d color test panel (Geller & Hudnell 1997, Paramei et al 2004). These factors have led 

some to question the relationship between exposure to organic solvents and visual 

impairments (Lomax et al 2004). The current studies in experimental animals under 

controlled laboratory conditions alleviate concerns for mismatched control groups, 

undocumented prior exposure levels and other uncontrolled potential confounding factors 

that are typically present in cross sectional occupational studies. Exposure concentrations in 

the current study without effect included those up to 100 ppm, while 1000 ppm was the only 

concentration producing a measurable deficit. The rats were exposed for a maximum 

duration of only 13 weeks, however, compared to multiple years of exposure in human 

occupational studies. When expressed as a cumulative exposure metric, rats exposed to 1000 

ppm toluene in the current experiments for 4 or 13 weeks (assuming 6 hours/day, 5 days/

week is approximately equivalent to one occupational work week) would show NOAELs 

and LOAELs of approximately 77 or 250 ppm-years, respectively, which are below the 

ranges of cumulative exposures reported to cause comparable effects in human occupational 

studies. The results of the current laboratory experiments therefore support the veracity of 

occupational reports by demonstrating that repeated exposure to the organic solvent toluene 

is associated with the development of persistent deficits in visual function.

The Naka-Rushton parameter Rmax was reduced by toluene, and reflects the asymptotic 

maximal response amplitude of the ERG, which has been interpreted to reflect the total 

functional area of the retina (Gangadhar et al 1989) (Gangadhar et al 1989). In mammalian 

retinas, rod photoreceptors make synaptic contact with only one type of retinal bipolar cell, 

the depolarizing rod bipolar cell (DBCR), which depolarizes in response to light spots (Wu 

et al., 2005). The dark-adapted ERG b-wave amplitude is thought to reflect the firing 

patterns of DBCR cells (Gurevich & Slaughter 1993, Robson et al 2004, Stockton & 

Slaughter 1989, Tian & Slaughter 1995). The DBCR cells synapse onto AII amacrine cells. 

The cell bodies of AII amacrine cells receive multiple inputs from dopaminergic amacrine 

cells that are involved in modulation of response sensitivity to changing levels of 

background illumination (Farsaii & Connaughton 2007). Thus, the report of a loss of 
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dopaminergic amacrine cells following experimental exposure to styrene (Vettori et al 2000) 

and the current finding of lower ERG b-wave amplitudes (presumably reflecting lower 

DBCR activation) in response to toluene may have in common the altered function of AII 

amacrine cells. Dopaminergic amacrine cells are involved in feedback modulation of the 

antagonistic center-surround receptive fields of retinal bipolar and ganglion cells (Wu 2010). 

The antagonistic center surround receptive field structure is the primary functional 

organization that first encodes both luminance contrast and color contrast. Therefore, these 

feedback mechanisms are critical for both visual contrast sensitivity and for color 

discrimination. The altered B-wave amplitudes could reflect damage or dysfunction of the 

inner nuclear retinal layer where the cell bodies of the bipolar cells and the dopaminergic 

amacrine cells reside. On the other hand, we did not observe changes in visual contrast 

sensitivity. In addition, behavioral testing of some of the same rats used in the current 

experiments, or other rats from the same exposure chambers, did not reveal altered 

sensitivity to challenges with dopaminergic agonists or antagonists (Beasley et al 2010) 

suggesting that there was not a general dopaminergic toxicity across the CNS from this set 

of toluene treatments.

Although the reduction of b-wave amplitude observed in this study was persistent and dose-

related, the data available were not sufficient to definitively identify any particular cell type 

or region of the retina as the locus of damage. We previously reported that acute exposure to 

1000 ppm toluene altered gene expression profiles in rat cortex and striatum that were 

associated with changes in synaptic plasticity, long term depression, GABA receptor 

signaling and mitochondrial function (Hester et al 2011). After subchronic exposure, 

however, far fewer differentially expressed genes were observed, suggesting adaption to 

most of the effects of toluene exposure (Hester et al 2012). Of the few differentially 

expressed genes in brain tissue after subchronic toluene exposure, there were no genes 

related to long term depression, and only one of 24 genes associated with GABA receptor 

signaling. Mice treated acutely with intravitreal injections of GABA to suppress activity in 

ganglion, amacrine and horizontal cells showed reduced b-wave amplitudes at low levels of 

stimulus luminance and increased b-wave amplitudes at high levels of stimulus luminance 

(Robson et al 2004), the opposite of the pattern observed here. A mutant strains of mouse, 

termed the nob (no b-wave), have mutations in the Nyx gene, which encodes a protein 

nyctaopin that is strongly expressed in the inner nuclear layer of the retina (Gregg et al 2003, 

Pesch et al 2003). The nob mice have a defect in synaptic transmission between 

photoreceptors and depolarizing bipolar cells which is associated with a lack of a b-wave in 

the ERG. Among the genes altered after acute exposure (Hester et al 2011) that were 

associated with long term depression were genes involved in pathways for two metabotropic 

glutamate receptors (mGluRs) including mGluR1 (type I) and mGluR7 (type III). 

Interestingly, both retinal rod and cone pathways include mGluR6, a retinal variant of the 

Type III metabotropic glutamate receptor. Blockage of the mGluR6 receptor with the drug 

l-2-amino-4-phosphonobutyric acid (APB) leads to ERG responses with no b-wave (Knapp 

& Schiller 1984). In addition, Riegal and co-workers reported that lesions of dopaminergic 

pathways or blockage of metabotropic glutamate receptors in the nucleus accumbens 

blocked acute toluene increases in locomotor activity (Riegel et al 2003). Therefore, another 

possibility is that acute toluene exposure leads to altered expression of mGluR6 in the retina, 
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and longer term toluene exposure causes the differential gene expression to subside, but 

leaving the inner nuclear synaptic function at a sub-optimal level causing less than maximal 

b-wave amplitudes to be achieved even with very bright stimuli.

Rats exposed to toluene for 13 weeks did not show changes in pattern-elicited VEPs 

recorded from visual cortex. Similarly, there were no significant effects of toluene treatment 

on the slope or intercept for VEP amplitude/log contrast functions. The intercept of the VEP 

contrast amplitude function has been interpreted to be equivalent to the perceptual contrast 

threshold (Silveira et al 1987). We hypothesized that the VEP intercept contrast threshold 

would be increased in rats exposed to toluene, but this was not the case. The lack of change 

in visual contrast sensitivity in these toluene exposed rats, as opposed to occupationally-

exposed humans (Donoghue et al 1995), might be attributed to many factors such as 

differences between the dose and duration of exposure, or differences between sensitivity of 

the visual systems of rats and humans. The fact that we observed changes in ERGs but not 

VEPs from subchronic toluene exposure suggests that elements in the rat retina may be more 

sensitive to organic solvent exposure than is the rat visual cortex.

Several lines of evidence suggest that subchronic toluene exposure did not impair retinal rod 

or cone photoreceptors. There were no changes in scotopic and photopic ERG a-waves 

measured either at the peak or at 10 ms. The latter measure is thought to reflect the function 

of the photoreceptors without the contribution of other retinal cells (Fox et al 2008, Jamison 

et al 2001). The flicker ERG amplitudes recorded with UV or green lights were unchanged, 

suggesting that the function of S-cones and M-cones was not altered by toluene. Finally, no 

treatment effects could be identified either by non-parametric grading of IHC staining 

reaction or by quantitative assessment of rod and M-cone densities in rats exposed to various 

levels of toluene for either 4 or 13 weeks. These data together suggest that the photoreceptor 

population was not impaired by toluene exposure.

The negative IHC result in this study should not be interpreted as sufficient to show a lack of 

photoreceptor toxicity. Both methods of analysis (IHC and photoreceptor density) are 

somewhat insensitive measures of cellular injury. For example, IHC is excellent for 

demonstrating the presence of a protein, but not how much of it is contained within a cell or 

how rapidly it is being turned over. It may be that cells have a lowered metabolic activity as 

a result of the injury. This is especially relevant for the opsin proteins evaluated in this study, 

since the rod and cone outer segments are normally turned over at a rapid rate. If both the 

rate of production and turn-over are simultaneously reduced, the total protein in the cells 

would remain unchanged. A better approach might be to look at opsin-specific mRNA 

production. Likewise, photoreceptor density analysis would reveal an effect only if the toxic 

insult was sufficient to actually cause cell death. Although photoreceptors can be easily 

killed by some agents (e.g., iodate salts), they are generally quite robust in that they have the 

ability to greatly reduce their metabolic activity in response to hypoxia, such as they do in 

retinal detachment.

It was interesting to note that in all cases in which damage was observed, both optic nerve 

atrophy and cataract were bilateral, suggesting that these lesions might be of toxic origin. 

However, since the rats were not examined with an ophthalmoscope prior to toluene 
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exposure, we cannot conclude with certainty that this is the case, particularly for optic 

atrophy. In addition, the bilateral cataracts may have been congenital or simply age-related. 

The extent to which the degeneration of the RPE observed in some rats was related to 

toluene exposure is unknown, as this lesion can be observed in normal subjects, e.g. those 

with longer ocular axis, or again as the result of normal aging.

In summary, 13 weeks of toluene exposure to 1000 ppm toluene caused a persistent 

reduction of ERG b-wave amplitudes, suggestive of changes in the function of retinal on-

bipolar cells, which are located in the inner nuclear layer of the retina with synaptic 

connections in adjacent inner and outer plexiform layers. The deficits in ERG b-wave 

amplitude were still observed one year after termination of the 13 weeks of exposure, 

indicating that there were long lasting changes in retinal function with no observed recovery. 

Exposure for 4 weeks was insufficient to cause this result. The other electrophysiological 

and immunohistochemical evidence collected did not reveal additional sites of damage in the 

visual pathway including the rod or cone photoreceptors or the visual cortex.
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Highlights

Rats were exposed to either control air or one of three concentrations of toluene vapors 

for either 4 or 13 weeks and their visual function was measured either shortly after 

termination of exposure or approximately 1 year afterward. Rats exposed to 1000 ppm 

toluene for 13 showed a reduction of the electroretinogram b-wave amplitude at higher 

flash illumination values when tested shortly after termination of exposure and also one 

year later. Rats exposed to lower concentrations (10 or 100 ppm) or for a shorter duration 

(4 weeks) did not show significant ERG changes. The results confirm previous 

observational studies of persistent visual deficits in workers exposed to organic solvent 

vapors in a controlled experimental setting that avoids many of the potential confounding 

and interpretational factors associated with cross-sectional occupational studies. When 

expressed as cumulative exposure (ppm-years), the deficits of visual function observed in 

rats occurred at levels of exposure lower than those reported to impair visual function in 

occupational studies.
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FIGURE 1. 
Contrast-amplitude functions for pattern-reversal elicited visual evoked potentials recorded 

from rats approximately 2 weeks after termination of 13 weeks of exposure to 0, 10, 100 or 

1000 ppm toluene. The contrast of the visual pattern is expressed in percent and plotted on a 

log scale. The lines are linear regressions fitted to the F2 amplitude-log contrast data. 

Amplitude values that were less than the mean noise level +2 SEM were omitted. There 

were no statistically significant effects of toluene treatment on the VEP amplitudes or either 

the slope or intercept of the contrast amplitude functions. Plotted values reflect the mean +/− 

SEM.
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FIGURE 2. 
Sample electroretinograms from two individual rats treated for 13 weeks with 0 ppm (left 

panel) or 1000 ppm (right panel) toluene. ERGs are shown from the dark-adapted intensity 

series progressing from dim (bottom trace) to bright (top trace) flash stimuli. The a and b-

waves are identified on the top trace. The latencies of both peaks decreased and the 

amplitudes increased with progressively brighter stimuli.
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Figure 3a

Figure 3b

FIGURE 3. 
Panel A Dark-adapted b-wave ERG amplitudes as a function of log flash luminance in 

groups of rats treated for 13 weeks with 0 (n=9), 10 (n=10), 100 (n=9) or 1000 (n=9) ppm 

toluene. ERGs were recorded 5–6 weeks after the termination of exposure. There was a 

statistically significant reduction of ERG amplitudes at the higher flash luminance values in 

rats treated with 1000 ppm toluene. Panel B. Dark-adapted b-wave ERG amplitudes in 

groups of rats treated for 13 weeks with 0, 10, 100 or 1000 ppm toluene and recorded 

approximately 1 year after the termination of exposure. There was a statistically significant 
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reduction of ERG amplitudes at the higher flash luminance values in rats treated with 1000 

ppm toluene.
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Figure 4. 
Panel A Dark-adapted b-wave ERG amplitudes as a function of log flash luminance in 

groups of rats treated for 4 weeks with 1, 10, 100 or 1000 ppm toluene and recorded 

approximately 2–3 weeks after the termination of exposure. There was no statistically 

significant reduction of ERG amplitudes. Panel B. Dark-adapted b-wave amplitudes in 

groups of rats treated for 4 weeks with 0 or 1000 ppm toluene and recorded approximately 1 

year after the termination of exposure. No significant difference between ERG amplitudes of 

toluene-exposed and control rats was seen. Plotted values are +/− SEM. The lines are Naka-

Rushton functions fit to the group mean data as described in the Methods Section.
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Figure 5a

Figure 5b

Figure 5. 
FIGURE 5A. Transverse section of the retina of one representative eye stained with an 

antibody for rhodopsin that labeled the outer segments of rod photoreceptors. The 

photoreceptor inner segments (lower left) are labeled with diaminobenzidine (DAB, brown 
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reaction product). The photoreceptor inner segments (upper right) are unlabeled. Scale bar = 

10 μm.

FIGURE 5B. Rod density vs. toluene dose. The mean number of retinal rods / micron2 was 

not significantly altered by treatment with toluene. Bars reflect mean +/− S.E.M.
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Figure 6a

Figure 6b

Figure 6. 
FIGURE 6A. Transverse section at the level of the photoreceptor outer segments of the 

retina of one representative eye stained with an antibody for M-cone opsin 

(diaminobenzidine, DAB, brown reaction product). The rods are counterstained with 

toluidine blue. Scale bar = 10 μm.
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FIGURE 6B. M-cone density vs. toluene dose. The mean number of retinal m-cones / 

micron2 was not significantly altered by treatment with toluene. Bars reflect mean +/− 

S.E.M
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