13 research outputs found

    Influence of Age, Heart Failure and ACE Inhibitor Treatment on Plasma Renin Activity in Children:Insights from a Systematic Review and the European LENA Project

    Get PDF
    BACKGROUND: Plasma renin activity (PRA) has gained relevance as prognostic marker in adults with heart failure. The use of PRA as a clinically meaningful parameter in children and children with heart failure requires a thorough knowledge of the factors that influence PRA to correctly assess PRA levels. We aim to evaluate the influence of age, heart failure and angiotensin-converting enzyme inhibitor (ACEi) on PRA levels in children. METHODS: We conducted a systematic literature search to identify studies on PRA levels in healthy children and in children with heart failure. In addition, we analysed PRA data measured before (n = 35, aged 25 days-2.1 years), 4 hours after (n = 34) and within the first 8 days of enalapril treatment (n = 29) in children with heart failure from the European project Labeling of Enalapril from Neonates up to Adolescents (LENA). RESULTS: Age has a profound effect on PRA levels in healthy children, as PRA levels in the literature are up to about 7 times higher in neonates than in older children. Children with heart failure younger than 6 months showed 3-4 times higher PRA levels than healthy peers in both the literature and the LENA studies. In the LENA studies, the ACEi enalapril significantly increased median predose PRA by a factor of 4.5 in children with heart failure after 4.7 ± 1.6 days of treatment (n = 29, p &lt; 0.01). Prior to treatment with enalapril, LENA subjects with symptomatic heart failure (Ross score ≥3) had a significantly higher PRA than LENA subjects with asymptomatic heart failure of comparable age (Ross score ≤2, p &lt; 0.05). CONCLUSIONS: Age, heart failure and ACEi treatment have a notable influence on PRA and must be considered when assessing PRA as a clinically meaningful parameter. CLINICAL TRIAL REGISTRATION: The trials are registered on the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu). TRIAL REGISTRATION NUMBERS: EudraCT 2015-002335-17, EudraCT 2015-002396-18.</p

    Influence of Age, Heart Failure and ACE Inhibitor Treatment on Plasma Renin Activity in Children:Insights from a Systematic Review and the European LENA Project

    Get PDF
    BACKGROUND: Plasma renin activity (PRA) has gained relevance as prognostic marker in adults with heart failure. The use of PRA as a clinically meaningful parameter in children and children with heart failure requires a thorough knowledge of the factors that influence PRA to correctly assess PRA levels. We aim to evaluate the influence of age, heart failure and angiotensin-converting enzyme inhibitor (ACEi) on PRA levels in children. METHODS: We conducted a systematic literature search to identify studies on PRA levels in healthy children and in children with heart failure. In addition, we analysed PRA data measured before (n = 35, aged 25 days-2.1 years), 4 hours after (n = 34) and within the first 8 days of enalapril treatment (n = 29) in children with heart failure from the European project Labeling of Enalapril from Neonates up to Adolescents (LENA). RESULTS: Age has a profound effect on PRA levels in healthy children, as PRA levels in the literature are up to about 7 times higher in neonates than in older children. Children with heart failure younger than 6 months showed 3-4 times higher PRA levels than healthy peers in both the literature and the LENA studies. In the LENA studies, the ACEi enalapril significantly increased median predose PRA by a factor of 4.5 in children with heart failure after 4.7 ± 1.6 days of treatment (n = 29, p &lt; 0.01). Prior to treatment with enalapril, LENA subjects with symptomatic heart failure (Ross score ≥3) had a significantly higher PRA than LENA subjects with asymptomatic heart failure of comparable age (Ross score ≤2, p &lt; 0.05). CONCLUSIONS: Age, heart failure and ACEi treatment have a notable influence on PRA and must be considered when assessing PRA as a clinically meaningful parameter. CLINICAL TRIAL REGISTRATION: The trials are registered on the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu). TRIAL REGISTRATION NUMBERS: EudraCT 2015-002335-17, EudraCT 2015-002396-18.</p

    Impact of Impaired Renal Function on the Pharmacokinetics of the Antiepileptic Drug Lacosamide

    No full text
    Background and Objective The antiepileptic drug lacosamide is eliminated predominantly via the kidneys. Therefore, an evaluation of the impact of renal impairment on its pharmacokinetic profile is an important component of its safety assessment. The objective of this study was to evaluate the pharmacokinetic profile of lacosamide among individuals with renal impairment (mild, moderate, or severe) and among patients with end-stage renal disease (ESRD), including those on hemodialysis. Methods This was an open-label, Phase I trial. The pharmacokinetics of a single oral 100-mg lacosamide dose were evaluated in five groups of participants: healthy controls, patients with mild, moderate, or severe renal impairment, and patients with ESRD (with and without hemodialysis). Results Forty participants completed the trial, eight in each group. In healthy volunteers, renal clearance accounted for approximately 30 % of total body clearance [geometric mean 0.5897 l/h (coefficient of variation 37.9 %) vs 2.13 l/h (20.8 %)]. With severe renal impairment, renal clearance was approximately 11 % of total body clearance [0.1428 l/h (31.8 %) vs 1.34 l/h (26.9 %)]. Terminal half-life and systemic exposure were increased with renal impairment, while total body clearance, renal clearance, and urinary excretion were decreased. Strong positive correlations between creatinine clearance, renal clearance, and urinary excretion were observed. Among patients with ESRD, approximately 50 % of lacosamide was cleared from systemic circulation by 4-h hemodialysis. In patients with essentially no renal clearance, nonrenal clearance was still present (1.1 l/h). Lacosamide was well tolerated by healthy volunteers and patients. Conclusions In patients with mild-to-moderate renal impairment, lacosamide dose adjustment is not necessary, because total body clearance decreased by only approximately 20 %. Dose adjustment, however, is required for patients with severe renal impairment. Hemodialysis removes approximately 50 % of lacosamide from plasma; therefore, dose supplementation following hemodialysis should be considered

    Drug metabolism and pharmacokinetics

    No full text
    In this article, aspects of absorption, distribution, metabolism, and excretion have been described bearing in mind the pathogenesis of allergic diseases and their possible therapeutic opportunities. The importance of the routes of administration of the different therapeutic groups has been emphasized. The classical aspects of drug metabolism and disposition related to oral administration have been reviewed, but special emphasis has been given to intranasal, cutaneous, transdermal, and ocular administration as well as to the absorption and the subsequent bioavailability of drugs. Drug-metabolizing enzymes and transporters present in extrahepatic tissues, such as nasal mucosa and the respiratory tract, have been particularly discussed. As marketed antiallergic drugs include both racemates and enantiomers, aspects of stereoselective absorption, distribution, metabolism, and excretion have been discussed. Finally, a new and promising methodology, microdosing, has been presented, although it has not yet been applied to drugs used in the treatment of allergic diseases

    Model-dependent pharmacokinetic analysis of enalapril administered to healthy adult volunteers using orodispersible minitablets for use in pediatrics

    No full text
    Introduction: Comparative pharmacokinetic (PK) data analysis of drugs administered using developed child-appropriate and market authorized dosage formulation is sparse and is important in pediatric drug development. Objectives: To compare and evaluate any differences in PK of enalapril administered using two treatments of child-appropriate orodispersible minitablets (ODMTs) and market authorized reference tablet formulation (Renitec®) using PK compartment model and validated least square minimization method (LSMM) of parameter estimation. Methods: Full profile data sets were obtained from a phase I clinical trial, whereby three treatments of enalapril, ie, reference tablets with 240 mL water (treatment A), child-appropriate ODMTs with 240 mL (treatment B), and ODMTs dispersed in the mouth with 20 mL water (treatment C), were administered to 24 healthy adult volunteers. Virtual validation analysis was conducted using R program to select accurate and precise LSMM of parameter estimation. For the selection of PK model and estimation of parameters, enalapril data were fitted with one-and two-compartment models with first order of absorption and elimination, with and without incorporated lag time parameter (tlag). The log-transformed PK parameters were statistically compared by the two-sided paired t-test with the level of significance of P<0.05. Results: One-compartment model with first-order absorption and elimination and incorporated lag time adequately predicted concentrations of enalapril. Reciprocal of predicted concentration using iteratively reweighted LSMM was selected as the most appropriate method of parameter estimation. Comparison of PK parameters including rate constant of absorption and elimination, volume of distribution, and tlag between the three treatments showed significant difference (P=0.018) in tlag between treatments B and A only. Conclusion: Compared with reference formulation, enalapril administered from child-appropriate ODMTs administered with 240 mL water appeared 4 minutes earlier in serum. No other differences were observed in absorption, elimination, and relative bioavailability of drug between the three treatment arms.status: publishe

    Simultaneous Semi-Mechanistic Population Pharmacokinetic Modeling Analysis of Enalapril and Enalaprilat Serum and Urine Concentrations From Child Appropriate Orodispersible Minitablets

    No full text
    Enalapril is recommended as the first line of therapy and is proven to improve survival rates for treatment of Pediatric Heart Failure; however, an approved drug and child appropriate dosage formulation is still absent. The present analysis was conducted to perform a detailed model informed population pharmacokinetic analysis of prodrug enalapril and its active metabolite enalaprilat in serum and urine. Further, a model informed dosage form population-pharmacokinetic analysis was conducted to evaluate differences in pharmacokinetics of enalapril and its active metabolite enalaprilat when prodrug was administered to 24 healthy adults in a crossover, two periods, two treatments, phase I clinical trial using child-appropriate orodispersible mini-tablets (ODMT) and reference (Renitec®) dosage formulation. A simultaneous semi-mechanistic population-pharmacokinetic model was developed using NONMEM software, which predicted full profile serum and urine concentrations of enalapril and enalaprilat. First-order conditional estimation with interaction was used for parameter estimation. Transit compartments added using Erlang distribution method to predicted enalapril absorption and enalaprilat formation phases. Normalized body weight was identified as covariate related to enalapril volume of distribution. Visual predictive check (VPC) plots and conducted bootstrap analysis validated the model. The data from the two formulations were pooled for population-pharmacokinetic analysis and covariate effect of the formulation was found on mean transit time (MTT1) of enalapril absorption. In addition, data of each formulation were modeled separately and the estimated parameters of each individual administered both formulations were correlated using paired samples Wilcoxon rank test (p < 0.05 = significant) which also showed only a significant difference (p = 0.03) in MTT1 i.e., 5 min early appearance of enalapril from ODMT compared to reference tablets. No difference in the pharmacokinetics of active enalaprilat was found from the ODMT compared to the reference formulation. The population pharmacokinetic analysis provided detailed information about the pharmacokinetics of enalapril and enalaprilat, which showed that the ODMT formulation might have similar pharmacodynamic response compared to the reference formulation.status: publishe

    Enalapril and Enalaprilat Pharmacokinetics in Children with Heart Failure Due to Dilated Cardiomyopathy and Congestive Heart Failure after Administration of an Orodispersible Enalapril Minitablet (LENA-Studies)

    Get PDF
    Angiotensin-converting enzyme inhibitors (ACEI), such as enalapril, are a cornerstone of treatment for pediatric heart failure which is still used off-label. Using a novel age-appropriate formulation of enalapril orodispersible minitablets (ODMTs), phase II/III open-label, multicenter pharmacokinetic (PK) bridging studies were performed in pediatric patients with heart failure due to dilated cardiomyopathy (DCM) and congenital heart disease (CHD) in five participating European countries. Children were treated for 8 weeks with ODMTs according to an age-appropriate dosing schedule. The primary objective was to describe PK parameters (area under the curve (AUC), maximal concentration (Cmax), time to reach maximal concentration (t-max)) of enalapril and its active metabolite enalaprilat. Of 102 patients, 89 patients (n = 26, DCM; n = 63 CHD) were included in the primary PK endpoint analysis. Rate and extent of enalapril and its active metabolite enalaprilat were described and etiology and age could be identified as potential PK modifying factors. The dosing schedule appeared to be tolerated well and did not result in any significant drug-related serious adverse events. The PK analysis and the lack of severe safety events supports the applied age-appropriate dosing schedule for the enalapril ODMTs
    corecore