3,801 research outputs found

    Rapid Quantification of Molecular Diversity for Selective Database Acquisition

    Get PDF
    There is an increasing need to expand the structural diversity of the molecules investigated in lead-discovery programs. One way in which this can be achieved is by acquiring external datasets that will enhance an existing database. This paper describes a rapid procedure for the selection of external datasets using a measure of structural diversity that is calculated from sums of pairwise intermolecular structural similarities

    Sequence of the RAG1 and RAG2 Intergenic Region in Zebrafish (Danio rerio)

    Get PDF
    The recombination activating genes, rag1 and rag2 are essential for the rearrangement of antigen receptor V, D, and J gene segments (Oettinger et al., 1990, Mombaerts et al., 1992; Sehatz and Oettinger, 1992; Shinkai et al., 1992). Both genes are found in all species that are known to rearrange their antigenspecific receptors. The coding regions as well as the genomic organization of the rag locus are highly conserved throughout evolution. Rag1 and rag2, which are convergently transcribed, are separated by an intergenic region of DNA that varies in size among species, being, for example, about 11 kb in the human (Homo sapiens), 8 kb in the mouse (Mus musculus), 5.2 kb in the frog (Xenopus laevis), 2.8 kb in the rainbow trout (Oncorhynchus mykiss) (Oettinger et al., 1990; Ichicara et al., 1992; Greenhalgh et al., 1993; Greenhalgh and Steiner., 1995; Hansen and Kaattari, 1996), and 2.6 kb in the zebrafish (Danio rerio).National Institutes of Health (U.S.) (Grant 2R01 AI08054)National Institutes of Health (U.S.) (Grant 5T32 AI07436)National Institutes of Health (U.S.) (Grant 1F32 AI09072

    The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus

    Get PDF
    Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)

    A Fermi Fluid Description of the Half-Filled Landau Level

    Full text link
    We present a many-body approach to calculate the ground state properties of a system of electrons in a half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma analogy, we calculate the pair-correlation function, the static structure function and the ground state energy in the thermodynamic limit. These results are in good agreement with the expected behavior at ν=12\nu=\frac12.Comment: 4 pages, REVTEX, and 4 .ps file

    Quantum Oscillations of Electrons and of Composite Fermions in Two Dimensions: Beyond the Luttinger Expansion

    Full text link
    Quantum oscillation phenomena, in conventional 2-dimensional electron systems and in the fractional quantum Hall effect, are usually treated in the Lifshitz-Kosevich formalism. This is justified in three dimensions by Luttinger's expansion, in the parameter omegac/μomega_c/\mu. We show that in two dimensions this expansion breaks down, and derive a new expression, exact in the limit where rainbow graphs dominate the self-energy. Application of our results to the fractional quantum Hall effect near half-filling shows very strong deviations from Lifshitz-Kosevich behaviour. We expect that such deviations will be important in any strongly-interacting 2-dimensional electronic system.Comment: 4 pages, 3 figures, LaTe
    • …
    corecore