5 research outputs found

    Using Nonionic Surfactants for Production of Semiconductor-type Carbon Nanotubes by Gel-based Affinity Chromatography

    Get PDF
    Single-wall carbon nanotubes (SWCNTs) have remarkable properties based on their electronic properties, i.e., metallic or semiconducting types, but as-grown SWCNTs contain a mixture of both types. Presented here is an improved and detailed method for producing highly enriched semiconducting SWCNTs from a colloidal suspension of as-grown SWCNTs through agarose gel column-based affinity chromatography. After a 2 wt% sodium dodecyl sulphate (SDS) aqueous dispersion of SWCNTs is passed through the gel column, metal-type SWCNTs preferentially elute out using a 1.5 wt% SDS solution. Semiconductor-type SWCNTs are subsequently recovered from the column using a 2 wt% Pluronic F77 surfactant solution eluent. The semiconductor-enriched fraction purity is in the 90-95% range, based on detailed UV-vis-NIR absorption and resonant Raman spectroscopy characterization of the particulate suspension. Semiconductor-type SWCNTs are recovered in solid form by evaporating the suspension fluid, and heating the dried sample in air to a temperature just above the Pluronic decomposition temperature. Using Pluronic and other nonionic-type surfactants can aid the scalability of the chromatographic production of semiconducting SWCNT samples

    Rural Patient Care: An Interprofessional Team Approach

    No full text
    Poster presentation about an interprofessional telehealth encounter with a long-COVID patient between the professions of osteopathic medicine, pharmacy, physician assistant, dentistry, nursing, social work, and physical therapy

    The virulence of the opportunistic fungal pathogen Aspergillus fumigatus requires cooperation between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded protein response (UPR)

    No full text
    International audienceThe filamentous fungal pathogen Aspergillus fumigatus secretes hydrolytic enzymes to acquire nutrients from host tissues. The production of these enzymes exerts stress on the endoplasmic reticulum (ER), which is alleviated by two stress responses: the unfolded protein response (UPR), which adjusts the protein folding capacity of the ER, and ER-associated degradation (ERAD), which disposes of proteins that fail to fold correctly. In this study, we examined the contribution of these integrated pathways to the growth and virulence of A. fumigatus, focusing on the ERAD protein DerA and the master regulator of the UPR, HacA. A ΔderA mutant grew normally and showed no increase in sensitivity to ER stress. However, expression of the UPR target gene bipA was constitutively elevated in this strain, suggesting that the UPR was compensating for the absence of DerA function. To test this, the UPR was disrupted by deleting the hacA gene. The combined loss of derA and hacA caused a more severe reduction in hyphal growth, antifungal drug resistance and protease secretion than the loss of either gene alone, suggesting that DerA and HacA cooperate to support these functions. Moreover, the ΔderA/ΔhacA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasted the wild type virulence of ΔderA and the reduced virulence of the ΔhacA mutant. Taken together, these data demonstrate that DerA cooperates with the UPR to support the expression of virulence-related attributes of A. fumigatus
    corecore