62 research outputs found

    Reprogramming of Virus-specific T Cells into Leukemia-reactive T Cells Using T Cell Receptor Gene Transfer

    Get PDF
    T cells directed against minor histocompatibility antigens (mHags) might be responsible for eradication of hematological malignancies after allogeneic stem cell transplantation. We investigated whether transfer of T cell receptors (TCRs) directed against mHags, exclusively expressed on hematopoietic cells, could redirect virus-specific T cells toward antileukemic reactivity, without the loss of their original specificity. Generation of T cells with dual specificity may lead to survival of these TCR-transferred T cells for prolonged periods of time in vivo due to transactivation of the endogenous TCR of the tumor-reactive T cells by the latent presence of viral antigens. Furthermore, TCR transfer into restricted T cell populations, which are nonself reactive, will minimize the risk of autoimmunity. We demonstrate that cytomegalovirus (CMV)-specific T cells can be efficiently reprogrammed into leukemia-reactive T cells by transfer of TCRs directed against the mHag HA-2. HA-2-TCR–transferred CMV-specific T cells derived from human histocompatibility leukocyte antigen (HLA)-A2+ or HLA-A2− individuals exerted potent antileukemic as well as CMV reactivity, without signs of anti–HLA-A2 alloreactivity. The dual specificity of these mHag-specific, TCR-redirected virus-specific T cells opens new possibilities for the treatment of hematological malignancies of HLA-A2+ HA-2–expressing patients transplanted with HLA-A2–matched or –mismatched donors

    Idarubicin and cytarabine in combination with gemtuzumab ozogamicin (IAGO) for untreated patients with high-risk MDS or AML evolved from MDS: a phase II study from the EORTC and GIMEMA Leukemia Groups (protocol 06013)

    Get PDF
    The primary objective of this trial was to assess the feasibility, toxicity profile, and antitumor activity of gemtuzumab ozogamicin (GO) combined with a chemotherapy remission-induction regimen in adults with untreated high-risk myelodysplastic syndrome (HR-MDS) or secondary acute myeloid leukemia (sAML). In this phase II trial, 30 patients with median age of 58 years received 1 day of GO as a 1-h infusion at the dose level of 5 mg/m² on day 7 of the remission-induction course further consisting of a continuous infusion of cytarabine 100 mg/m²/day for 10 days and idarubicin 12 mg/m²/day on days 1, 3, and 5. A consolidation course, consisting of intermediate-dose cytarabine (A) and idarubicin (I) followed by hematopoietic stem cell transplantation (HSCT) was planned for patients in complete remission (CR). The primary endpoints were response rate (CR/CRi) and severe toxicity rate. The secondary endpoint(s) were survival and progression-free survival (PFS) from start of treatment. Thirteen patients (43 %) achieved CR (eight patients) or CR with incomplete hematopoietic recovery (CRi) (five patients). In patients who achieved CR or CRi, the median timeto recovery of neutrophils to 0.5x109/1 and of platelets to >50x109/1 was 29 and 30 days, respectively. Grade 3 to 4 severe toxicities occurred in nine patients. The most prominent was liver toxicity, as shown by elevated bilirubin levels in 16 patients and one case of nonfatal veno-occlusive disease (VOD). All 13 patients with CR/CRi received consolidation therapy, which was followed by allogeneic HSCT in five patients and autologous HSCT in three patients. According to the statistical design of the study, the idarubicin and cytarabine in combination with gemtuzumab ozogamicin (IAGO) regimen did not show sufficient activity to warrant further exploration of this regimen in adult patients with HR-MDS or sAML

    Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy

    No full text
    The aim of adoptive T-cell therapy of cancer is to selectively confer immunity against tumor cells. Autoimmune side effects, however, remain a risk, emphasizing the relevance of a suicide mechanism allowing in vivo elimination of infused T cells. The findings of this study support the broad value of human CD20 as suicide gene in T-lymphocytes and safety switch in adoptive T-cell therapy

    Monitoring of engraftment and progression of acute lymphoblastic leukemia in individual NOD/SCID mice

    No full text
    Objective. The aim of this study was to develop an animal model for human acute lymphoblastic leukemia (ALL) in which the kinetics and characteristics of leukemia can be sequentially monitored in individual mice. Materials and Methods. NOD/SCID mice were inoculated intravenously with primary ALL. Progression of leukemia was monitored throughout the development of disease by determination of absolute leukemic cell counts (LCC) in peripheral blood. Results. LCC as low as 104 leukemic cells/mL blood could be detected. ALL cells from 5 of 5 patients engrafted, and after identification of the first leukemic cells in peripheral blood, LCC increased exponentially. Leukemic cells showed specificity of homing to spleen and bone marrow, and LCC strongly correlated with the level of leukemic engraftment in these organs throughout disease progression, demonstrating that LCC are representative for overall leukemic burden. Cytogenetic analysis of leukemic cells recovered after six successive in vivo transfers revealed no major karyotypic changes as compared to primary cells, and selection of the dominant clones was observed. This selection process was reflected by an increase in the rate of leukemic progression as compared to the first inoculation, demonstrating the accuracy with which kinetics of leukemic progression can be studied by determination of LCC. Conclusions. This model is suitable for detailed studies of kinetics and characteristics of ALL in vivo, and it may be useful for monitoring effects of novel therapeutic regimens
    • …
    corecore