21 research outputs found

    Sputum eosinophils are elevated in CF patients with asthma

    Get PDF

    Chronic Rejection Pathology after Orthotopic Lung Transplantation in Mice: The Development of a Murine BOS Model and Its Drawbacks

    Get PDF
    Almost all animal models for chronic rejection (CR) after lung transplantation (LTx) fail to resemble the human situation. It was our attempt to develop a representative model of CR in mice. Orthotopic LTx was performed in allografts receiving daily immunosuppression with steroids and cyclosporine. Controls included isografts and mice only undergoing thoracotomy (SHAM). Allografts were sacrificed 2, 4, 6, 8, 10 or 12 weeks after LTx. Pulmonary function was measured repeatedly in the 12w allografts, isografts and SHAM mice. Histologically, all allografts demonstrated acute rejection (AR) around the blood vessels and airways two weeks after LTx. This decreased to 50–75% up to 10 weeks and was absent after 12 weeks. Obliterative bronchiolitis (OB) lesions were observed in 25–50% of the mice from 4–12 weeks. Isografts and lungs of SHAM mice were normal after 12 weeks. Pulmonary function measurements showed a decline in FEV0.1, TLC and compliance in the allografts postoperatively (2 weeks) with a slow recovery over time. After this initial decline, lung function of allografts increased more than in isografts and SHAM mice indicating that pulmonary function measurement is not a good tool to diagnose CR in a mouse. We conclude that a true model for CR, with clear OB lesions in about one third of the animals, but without a decline in lung function, is possible. This model is an important step forward in the development of an ideal model for CR which will open new perspectives in unraveling CR pathogenesis and exploring new treatment options

    Heterogeneity of chronic lung allograft dysfunction: insights from protein expression in broncho alveolar lavage

    No full text
    BACKGROUND: Chronic lung allograft dysfunction (CLAD) remains a major risk factor for death after lung transplantation. Previous data suggested that within CLAD at least 2 phenotypes are present: a neutrophilic type (nCLAD or neutrophilic reversible allograft dysfunction [NRAD]), reversible with azithromycin therapy, vs a low neutrophilic type, non-responsive to azithromycin (fibrotic bronchiolitis obliterans syndrome [fBOS]). We aimed to further characterize this dichotomy by measuring multiple proteins in the bronchoalveolar lavage (BAL) fluid of 28 lung recipients. METHODS: Patients were retrospectively subdivided by the absence or presence of CLAD and subsequently by their response to azithromycin, resulting in 3 groups: 10 stable, 9 responsive (nCLAD/NRAD), and 9 non-responsive (fBOS). Enzyme-linked immunosorbent assay was used to measure 32 different proteins. RESULTS: Protein variations were predominantly present in the nCLAD/NRAD group, whereas no differences were observed in the fBOS group compared with control. MCP-1 (p < 0.01), RANTES (p < 0.05), IL-1β (p < 0.01), IL-8 (p < 0.01), TIMP-1 (p < 0.01), MMP-8 (p < 0.01), MMP-9 (p < 0.01), HGF (p < 0.001), MPO (p < 0.01), and bile acid (p < 0.05) concentrations were upregulated in nCLAD/NRAD compared with fBOS, whereas PDGF-AA (p < 0.05) was downregulated. CONCLUSIONS: These data provide further evidence that within CLAD there is a heterogeneity of phenotypes with different mechanisms involved. Further investigation is warranted to unravel the pathophysiology of both phenotypes.status: publishe
    corecore