125 research outputs found

    Dietary Anthocyanins: A Review of the Exercise Performance Effects and Related Physiological Responses

    Get PDF
    Foods and supplements high in anthocyanins are gaining popularity within sports nutrition. Anthocyanins are pigments within berries and other colourful fruits and vegetables. They have anti-oxidative and anti-inflammatory actions that improve recovery from exercise. Furthermore, anthocyanins can also affect vasoactive properties, including decreasing mean arterial blood pressure and increasing vasodilation during exercise. In vitro observations have shown anthocyanin- and metabolite-induced activation of endothelial nitric oxide synthase and human vascular cell migration. However, effects of anthocyanins on exercise performance without a prior muscle-damaging or metabolically demanding bout of exercise is less clear. For example, exercise performance effects have been observed for blackcurrant, but are less apparent for cherry, therefore indicating that the benefits could be due to the specific source-dependent anthocyanins. The mechanisms by which anthocyanin intake can enhance exercise performance may include effects on blood flow, metabolic pathways, and peripheral muscle fatigue, or a combination of all. This narrative review focuses on the experimental evidence for anthocyanins to improve exercise performance in humans

    Effect of New Zealand Blackcurrant Extract on Performance During the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players

    Get PDF
    It was observed previously that New Zealand blackcurrant (NZBC) extract reduced slowing of the maximal 15 m sprint speed during the Loughborough Intermittent Shuttle Test. We examined the effect of NZBC extract on the performance of the Running Based Anaerobic Sprint Test (RAST, 6 × 35-m sprints with 10 seconds passive recovery) in trained youth and recreationally active football players. Fifteen recreationally active (University team) (age: 20 ± 1 years, height: 174 ± 19 cm, body mass: 80 ± 13 kg) and nine trained youth players (English professional club) (age: 17 ± 0 years, height: 178 ± 8 cm, body mass: 69 ± 9 kg, mean ± SD) participated in three testing sessions. Prior to the RASTs, participants consumed two capsules of NZBC extract (600 mg?day?1 CurraNZ®) or placebo (P) for 7 days (double blind, randomised, cross-over design, wash-out at least 14 days). Ability difference between groups was shown by sprint 1 time. In the placebo condition, trained youth players had faster times for sprint 1 (5.00 ± 0.05 s) than recreationally active players (5.42 ± 0.08 s) (p < 0.01). In trained youth players, there was a trend for an effect of NZBC extract (p = 0.10) on the slowing of the sprint 1 time. NZBC extract reduced slowing of the sprint 5 time (P: 0.56 ± 0.22 s; NZBC: 0.35 ± 0.25, p = 0.02) and this was not observed in recreationally active players (P: 0.57 ± 0.48 s; NZBC: 0.56 ± 0.33, p = 0.90). For fatigue index, expressed as a % change in fastest sprint time, there was a strong trend to be lower in both trained youth and recreationally active players combined by NZBC extract (P: ?13 ± 7%; NZBC: ?11 ± 6%, p = 0.06) with 12 participants (five trained youth) experiencing less fatigue. New Zealand blackcurrant extract seems to benefit repeated sprint performance only in trained football players

    Effect of New Zealand Blackcurrant Extract on Repeated Cycling Time Trial Performance

    Get PDF
    Abstract: New Zealand blackcurrant (NZBC) extract increased 16.1 km cycling time trial performance. The aim of the present study was to examine the effect of NZBC extract on 2 × 4 km time trial performance. Ten male cyclists (age: 30 ± 12 years, body mass: 74 ± 9 kg, height: 179 ± 7 cm, body fat: 11 ± 3%, V˙ O2max: 55 ± 7 mL·kg−1·min−1, mean ± SD) volunteered. Participants were familiarized with the time trials. Participants consumed capsulated NZBC extract (300 mg·day−1 CurraNZ™; containing 105 mg anthocyanin) or placebo for seven days (double blind, randomised, cross-over design, wash-out at least seven days) before 2 × 4 km time trials (10 min active self-paced recovery between trials) (SRM ergometer, SRM International, Germany). Heart rate was recorded and blood lactate sampled immediately after each trial and 8 min into recovery between the trials. Times over comparable one km distances in each 4 km time trial were similar. No effect was observed for the time to complete the first (placebo: 380 ± 28 s, NZBC: 377 ± 27 s) and second 4 km of cycling (placebo: 391 ± 32 s, NZBC: 387 ± 30 s), within both groups the second 4 km times slower by 11 ± 8 s and 11 ± 9 s for placebo and NZBC, respectively. However, the total time of the two 4 km cycling trials was 0.82% faster with NZBC extract (placebo: 771 ± 60 s, NZBC 764 ± 56 s, p = 0.034) with seven participants having faster total times. There was no effect of NZBC on heart rate and lactate values at identical time points. New Zealand blackcurrant extract seems to be beneficial in repeated short-distance cycling time trials for overall performance

    Beneficial Effects on Fasting Insulin and Postprandial Responses Through 7-day Intake of New Zealand Blackcurrant Powder

    Get PDF
    Background: Blood glucose and insulin are elevated after intake of carbohydrate, with levels returning to normal in about 2-3 hours after ingestion. We examined the effects of daily New Zealand blackcurrant intake over 7 days on fasting glucose and insulin levels and the responses of glucose and insulin during an oral glucose tolerance test (i.e. OGTT). Methods: Seventeen healthy participants (9 males, 8 females, age: 24±8 years, body mass: 75.4±16.4 kg, height 172±11 cm, body mass index: 25.3±3.3) consumed 6 g·day-1 New Zealand blackcurrant (NZBC) powder for 7 days. Every 6 g of the serving contained 138.6 mg anthocyanins, 49 mg vitamin C, and 5.2 g of carbohydrates with total phenolic content 271.6 mg. A cross-over design was used. Participants completed one OGTT before starting the supplementation (day 0) and another OGTT after 7 days of the supplementation (day 7). For the OGTT, participants were seated and consumed 75 g of glucose dissolved in 250 mL water. Finger prick capillary samples were taken before and every 30 minutes for a total of 120 minutes after consuming the glucose drink. Following duplicate glucose analysis, blood samples were centrifuged and then plasma was separated and frozen (-20°C) for triplicate insulin analysis using a human 96-well insulin enzyme-linked immunosorbent assay (IBL international, Hamburg, Germany). Results: NZBC had no effect on fasting glucose (control: 4.46±0.45; NZBC: 4.41±0.44 mmol·L1, P=0.657), although there was a trend for fasting insulin to be 14.3% lower (control: 66.5±28.2; NZBC: 57.0±29.5 pmol·L-1) (P=0.091). HOMA-IR was not different between the control and NZBC (1.81±0.73 vs 1.58±0.83) (P=0.126). With NZBC during the OGTT, plasma glucose at 60 min was 8.1% lower (control: 6.68±1.13; NZBC: 6.14±1.41 mmol·L-1; P=0.016), insulin at 30 min was 18.4% lower (control: 337.1±228.3; NZBC: 275.0±136.4 pmol·L-1; P= 0.021), and insulin at 60 min was 39.2% lower (control: 297.8±154.3; NZBC: 181.2±97.4 pmol·L-1; P= 0.002). With NZBC during the OGTTs, areas-under-the-curve for plasma glucose (control: 752.6±79.4, NZBC: 709.8±93.3 mmol·L-1·120 min) and insulin (control: 28443±12816, NZBC: 20406±7985, pmol·L-1·120 min) were 5.7% (P=0.051) and 31.1% lower (P<0.001) respectively. Conclusion: A trend for lower fasting insulin with normal glucose and lower areas under the curve for glucose and insulin suggests that repeated intake of New Zealand blackcurrant powder increases insulin sensitivity. This is the first observation of a high-anthocyanin containing berry powder to increase insulin sensitivity. Regular intake of New Zealand blackcurrant powder may be beneficial for the postprandial responses in people with type 2 diabetes or metabolic syndrome

    Effect of New Zealand Blackcurrant Extract on Cycling Performance and Substrate Oxidation in Normobaric Hypoxia in Trained Cyclists

    Get PDF
    This study explored New Zealand blackcurrant (NZBC) extract for enhanced exercise-induced fat oxidation and 16.1 km cycling time trial (TT) performance in normobaric normoxia. The effect of NZBC extract on physiological and metabolic responses was examined during steady state cycling and a 16.1 km TT in normobaric hypoxia. This study used a randomized, double-blind, crossover design. Eleven healthy male cyclists (age: 38 ± 11 y, height: 179 ± 4 cm, body mass: 76 ± 8 kg, V ˙ O2max: 47 ± 5 mL·kg−1·min−1, mean ± SD) ingested NZBC extract (600 mg·day−1 CurraNZ® containing 210 mg anthocyanins) or a placebo (600 mg microcrystalline cellulose M102) for seven days (washout 14 days) and performed a steady state cycling test (3 × 10 min at 45%, 55% and 65% V ˙ O2max) followed by a 16.1 km TT at a simulated altitude of ~2500 meters (~15% of O2). Indirect calorimetry was used to measure substrate oxidation during steady state cycling. Intake of NZBC extract had no effect on blood glucose and lactate, heart rate, substrate oxidation, and respiratory exchange ratio during steady state cycling at 45%, 55% and 65% V ˙ O2max, and on 16.1 km TT performance (placebo: 1685 ± 92 s, NZBC extract: 1685 ± 99 s, P = 0.97). Seven days intake of New Zealand blackcurrant extract does not change exercise-induced metabolic responses and 16.1 km cycling time trial performance for moderately endurance-trained men in normobaric hypoxia

    Satisfactory cross cultural equivalence of the Dutch WOMAC in patients with hip osteoarthritis waiting for arthroplasty

    Get PDF
    Background: Cross cultural validity is of vital importance for international comparisons. Objective: To investigate the validity of international Dutch-English comparisons when using the Dutch translation of the Western Ontario and McMaster Universities osteoarthritis index (WOMAC). Patients and Methods: The dimensionality, reliability, construct validity, and cross cultural equivalence of the Dutch WOMAC in Dutch and Canadian patients waiting for primary total hip arthroplasty was investigated. Unidimensionality and cross cultural equivalence was quantified by principal component and Rasch analysis. Intratest reliability was quantified with Cronbach's α, and test-retest reliability with the intraclass correlation coefficient. Construct validity was quantified by correlating sum scores of the Dutch WOMAC, Arthritis Impact Measurement Scales (Dutch AIMS2), Health Assessment Questionnaire (Dutch HAQ), and Harris Hip Score (Dutch HHS). Results: The WOMAC was completed by 180 Dutch and 244 English speaking Canadian patients. Unidimensionality of the Dutch WOMAC was confirmed by principal component and Rasch analysis (good fit for 20/22 items). The intratest reliability of the Dutch WOMAC for pain and physical functioning was 0.88 and 0.96, whereas the test-retest reliability was 0.77 and 0.92, respectively. Dutch WOMAC pain sum score correlated 0.69 with Dutch HAQ pain, and 0.39 with Dutch HHS pain. Dutch WOMAC physical functioning sum score correlated 0.46 with Dutch AIMS2 mobility, 0.62 with Dutch AIMS2 walking and bending, 0.67 with Dutch HAQ disability, and 0.49 with Dutch HHS function. Differential item functioning (DIF) was shown for 6/22 Dutch items. Conclusions: The Dutch WOMAC permits valid international Dutch-English comparisons after correction for DIF

    Anti-Xa versus time-guided anticoagulation strategies in extracorporeal membrane oxygenation: a systematic review and meta-analysis

    Get PDF
    The purpose was to compare time-based vs anti-Xa-based anticoagulation strategies in patients on ECMO. We conducted a systematic review and meta-analysis using multiple electronic databases and included studies from inception to July 19, 2019. The proportion of bleeding, thrombosis, and mortality were evaluated. Twenty-six studies (2,086 patients) were included. Bleeding occurred in 34.2% (95%CI 25.1;43.9) of the patients with anti-Xa-based versus 41.6% (95%CI 24.9;59.4) of the patients with time-based anticoagulation strategies. Thrombosis occurred in 32.6% (95%CI 19.1;47.7) of the patients with anti-Xa-based versus 38.4% (95%CI 22.2;56.1) of the patients with time-based anticoagulation strategies. And mortality rate was 35.4% (95%CI 28.9;42.1) of the patients with anti-Xa-based versus 42.9% (95%CI 36.9;48.9) of the patients with time-based anticoagulation strategies. Among the seven studies providing results from both anticoagulation strategies, significantly fewer bleeding events occurred in the anti-Xa-based anticoagulation strategy (adjusted OR 0.49 (95%CI 0.32;0.74),p < 0.001) and a significantly lower mortality rate (adjusted OR 0.61 (95%CI 0.40;0.95),p = 0.03). There was no significant difference in thrombotic events (adjusted OR 0.91 (95%CI 0.56;1.49),p = 0.71). In these seven observational studies, only a small fraction of the patients were adults, and data were insufficient to analyze the effect of the type of ECMO. In this meta-analysis of observational studies of patients on ECMO, an anti-Xa-based anticoagulation strategy, when compared to a time-based strategy, was associated with fewer bleeding events and mortality rate, without an increase in thrombotic events.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care

    Adult-onset autoinflammation caused by somatic mutations in UBA1:A Dutch case series of patients with VEXAS

    Get PDF
    Background: A novel autoinflammatory syndrome was recently described in male patients who harbored somatic mutations in the X-chromosomal UBA1 gene. These patients were characterized by adult-onset, treatment-refractory inflammation with fever, cytopenia, dysplastic bone marrow, vacuoles in myeloid and erythroid progenitor cells, cutaneous and pulmonary inflammation, chondritis, and vasculitis, which is abbreviated as VEXAS. Objective: This study aimed to (retrospectively) diagnose VEXAS in patients who had previously been registered as having unclassified autoinflammation. We furthermore aimed to describe clinical experiences with this multifaceted, complex disease. Methods: A systematic reanalysis of whole-exome sequencing data from a cohort of undiagnosed patients with autoinflammation from academic hospitals in The Netherlands was performed. When no sequencing data were available, targeted Sanger sequencing was applied in cases with high clinical suspicion of VEXAS. Results: A total of 12 male patients who carried mutations in UBA1 were identified. These patients presented with adult-onset (mean age 67 years, range 47-79 years) autoinflammation with systemic symptoms, elevated inflammatory parameters, and multiorgan involvement, most typically involving the skin and bone marrow. Novel features of VEXAS included interstitial nephritis, cardiac involvement, stroke, and intestinal perforation related to treatment with tocilizumab. Although many types of treatment were initiated, most patients became treatment-refractory, with a high mortality rate of 50%. Conclusion: VEXAS should be considered in the differential diagnosis of males with adult-onset autoinflammation characterized by systemic symptoms and multiorgan involvement. Early diagnosis can prevent unnecessary diagnostic procedures and provide better prognostic information and more suitable treatment options, including stem cell transplantation

    A nationwide assessment of hepatocellular adenoma resection:Indications and pathological discordance

    Get PDF
    Hepatocellular adenomas (HCAs) are benign liver tumors associated with bleeding or malignant transformation. Data on the indication for surgery are scarce. We analyzed indications and outcome of patients operated for HCAs 50 mm (52%), suspicion of (pre)malignancy (28%), and (previous) bleeding (5.1%). No difference was observed in HCA-subtype distribution between small and large tumors. Ninety-six (43%) patients had a postoperative change in diagnosis. Independent risk factors for change in diagnosis were tumor size <50 mm (adjusted odds ratio [aOR], 3.4; p < 0.01), male sex (aOR, 3.7; p = 0.03), and lack of hepatobiliary contrast-enhanced magnetic resonance imaging (CE-MRI) (aOR, 1.8; p = 0.04). Resection for small (suspected) HCAs was mainly indicated by suspicion of (pre)malignancy, whereas for large (suspected) HCAs, tumor size was the most prevalent indication. Male sex, tumor size <50 mm, and lack of hepatobiliary CE-MRI were independent risk factors for postoperative change in tumor diagnosis

    Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    Get PDF
    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P&lt;10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P&lt;5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health
    corecore