36 research outputs found

    The rocks are hotter on the other side of the fence: roadside habitats should inform mitigation design

    Get PDF
    Maintaining viable populations of large reptiles is often challenging in road fragmented landscapes. While mitigation structures can reduce impacts, few studies have investigated how mitigation success can be affected by roadside habitats. In southeast Ohio, USA, we evaluated mitigation effectiveness for state-endangered timber rattlesnakes (Crotalus horridus) at a new highway in a forested landscape. Road construction at the study site created a wide corridor of open canopy habitats (the right-of-way; ROW) containing roadcuts and stone piles. However, exclusion fencing was constructed along the forest-ROW boundary, leaving the open canopy habitats on the road-side of the fence. Over three years, we monitored 6 rattlesnakes using radiotelemetry and found that rattlesnakes repeatedly crossed the fence to access forest-edge and ROW habitats. Rattlesnakes ostensibly crossed through damaged sections of the fence. The ROW was used most intensively by gravid females (n = 2), with their core home ranges overlapping the ROW by more than 50 percent. Despite the fence crossings, all home ranges were bounded by the highway and no rattlesnake road mortality was observed. Operative temperature models revealed that the ROW provided warmer thermal regimes that were rare or unavailable in the forest. On average, field preferred gestation temperatures (Tb = 29.7°C, SD = 1.8) could be attained or exceeded for more than 5 times as many hours per day in the ROW (7.8 hours) than in the forest (1.4 hours). Habitat selection models indicated gravid females selected warmer thermal habitats that were spatially concentrated in the ROW and edge habitats, while non-gravid snakes avoided the ROW beyond the forest edge. Habitat use within the ROW was mostly limited to rocky microhabitat structures, especially riprap stone piles and subsurface rock crevices on roadcuts, which provided buffered thermal regimes with refugia from extreme temperatures during the day and warmer Te through the night. In forested landscapes, we encourage road planners to consider whether new road corridors are likely to introduce basking sites, and if so, maintain those features on the habitat-side of exclusion fencing, and consider restoring basking sites in the surrounding forest to reduce the potential for ecological trap formation

    Altered spring phenology of North American freshwater turtles and the importance of representative populations

    Get PDF
    Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long-term studies of phenology in ectothermic amniotes have been published. We test for climate- altered phenology using long-term studies (10–36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon, Malaclemys, Sternotherus, and Trachemys). Nesting season initiation oc- curs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evi- dence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change

    Effectiveness of Wildlife Mitigation Treatments Along the Nelsonville Bypass

    Get PDF
    SJN 135024The Nelsonville Bypass is a 9 mile stretch of U.S. Route 33 that runs through the Wayne National Forest, an area high in species diversity and home to several threatened and endangered species. The motorist safety, economic and conservation values of building effective mitigation features that reduce vehicle-wildlife collisions along the bypass have been nationally recognized. Mitigation features include: high and low fencing to reduce wildlife trespass into the right-of-way (ROW), uni-directional jump outs for wildlife exit from the ROW, underpasses and ecopassages to maintain habitat connectivity across the highway, high-mast lighting to lure bats above traffic flow, and replacement of wetlands and bat roosting habitat. Our two-year study employed road surveys, continuous monitoring of jump outs and wildlife passages, population estimations, detailed mapping of fence structures and breaches, and radio telemetry of an endangered target species. Road surveys of the bypass and control highways revealed that the mitigation structures reduced deer-vehicle collisions, but collisions still occurred on the bypass. Although, generally well-constructed, we identified several ways in which the mitigation features could be made more effective. Placement of fencing near the outer boundary of the ROW made it vulnerable to damage from erosion and tree falls, and isolated high-quality habitats within the ROW. Placement of the fence within 30-50 ft. of the roadway on less rugged terrain away from the forest would likely reduce costs of construction and maintenance while allowing wildlife access to habitat within the ROW. We also recommended regular maintenance inspections and mowing on both sides of the fencing. Jump outs were effective uni-directional exits, but wildlife, particularly deer, were not compelled to exit the expansive area within the ROW fencing. Placement of the fence with jump outs closer to the road would reduce habitat within the fence and combined with traffic noise may increase jump out use. Large wildlife underpasses and crossings were well used by a variety of mammal species. Smaller mammals used the small wildlife ecopassages. Reptiles and amphibians avoided the use of underpasses and road mortality rates of amphibians were high on Ohio State Route 78 (tributary road) near wetlands. Placement and passage design were contributing factors to high amphibian mortality. Radio-tracking of rattlesnakes discovered that snakes easily trespassed the small wildlife fencing and used the habitat within the ROW, likely because it was warmer than the surrounding forested habitat. No road mortality or attempted road crossings by rattlesnakes were detected. Finally, while bats foraged near the lights, most species were detected with equal frequency at different heights under the lighting. Our report details these findings and provides additional recommendations to improve design and construction of wildlife mitigation features both along the Nelsonville Bypass, and for future design of mitigation features for roadways in high-density wildlife areas

    Reciprocal Transplant Reveals Sources of Variation in Growth Rates of the Lizard Sceloporus Undulatus

    No full text
    Geographic variation in life history phenotypes between population of a single species is often assumed to reflect genetic divergence caused by natural selection. The relative contribution of genetic and environmental sources of phenotypic variation is plasticity induced by proximate environmental variation and genetic divergence is fundamental to understanding the ecological and evolutionary significance of geographic variation

    DataSheet_1_The rocks are hotter on the other side of the fence: roadside habitats should inform mitigation design.pdf

    No full text
    Maintaining viable populations of large reptiles is often challenging in road fragmented landscapes. While mitigation structures can reduce impacts, few studies have investigated how mitigation success can be affected by roadside habitats. In southeast Ohio, USA, we evaluated mitigation effectiveness for state-endangered timber rattlesnakes (Crotalus horridus) at a new highway in a forested landscape. Road construction at the study site created a wide corridor of open canopy habitats (the right-of-way; ROW) containing roadcuts and stone piles. However, exclusion fencing was constructed along the forest-ROW boundary, leaving the open canopy habitats on the road-side of the fence. Over three years, we monitored 6 rattlesnakes using radiotelemetry and found that rattlesnakes repeatedly crossed the fence to access forest-edge and ROW habitats. Rattlesnakes ostensibly crossed through damaged sections of the fence. The ROW was used most intensively by gravid females (n = 2), with their core home ranges overlapping the ROW by more than 50 percent. Despite the fence crossings, all home ranges were bounded by the highway and no rattlesnake road mortality was observed. Operative temperature models revealed that the ROW provided warmer thermal regimes that were rare or unavailable in the forest. On average, field preferred gestation temperatures (Tb = 29.7°C, SD = 1.8) could be attained or exceeded for more than 5 times as many hours per day in the ROW (7.8 hours) than in the forest (1.4 hours). Habitat selection models indicated gravid females selected warmer thermal habitats that were spatially concentrated in the ROW and edge habitats, while non-gravid snakes avoided the ROW beyond the forest edge. Habitat use within the ROW was mostly limited to rocky microhabitat structures, especially riprap stone piles and subsurface rock crevices on roadcuts, which provided buffered thermal regimes with refugia from extreme temperatures during the day and warmer Te through the night. In forested landscapes, we encourage road planners to consider whether new road corridors are likely to introduce basking sites, and if so, maintain those features on the habitat-side of exclusion fencing, and consider restoring basking sites in the surrounding forest to reduce the potential for ecological trap formation.</p

    Spatial variation in the littoral vertebrate community of a reservoir relative to physical and biological gradients

    Get PDF
    Reservoirs possess gradients in conditions and resources along their long (deep-shallow) axis, but the response of littoral vertebrates (fish and turtles) to these gradients is poorly understood. We have quantified the littoral vertebrate communities throughout a small reservoir in Southeastern Ohio during July and August using traps, and related community composition to environmental variables using NMDS ordination. Ordination revealed that fish and turtles were broadly separated in ordination space, and three distinctly different environmental gradients were significantly associated with the underlying observed species abundances. Observed turtle abundance was explained by measurements of bathymetry, turbidity, and benthic resources, but none of these environmental variables were a reliable predictor of observed fish abundance. Temperature was a poor predictor of observed abundance for both fish and turtles independently, but when fish and turtles were considered together, it became apparent that there were cold areas of the reservoir where observed fish and turtle abundances were different than in other areas of the reservoir. These results suggest that the predictor (environmental) variables we used were appropriate for investigating turtle ecology in reservoirs, but that observed fish abundance is mediated by factors that were not modeled. The efficacy of using traps, the ecological implications of considering fish and turtles together as sympatric and potentially competing species, and directions for future study are discussed

    Egg Component Comparisons within and among Clutches of the Diamondback Terrapin, Malaclemys terrapin

    No full text

    Spatial variation in the littoral vertebrate community of a reservoir relative to physical and biological gradients

    Get PDF
    Reservoirs possess gradients in conditions and resources along their long (deep-shallow) axis, but the response of littoral vertebrates (fish and turtles) to these gradients is poorly understood. We have quantified the littoral vertebrate communities throughout a small reservoir in Southeastern Ohio during July and August using traps, and related community composition to environmental variables using NMDS ordination. Ordination revealed that fish and turtles were broadly separated in ordination space, and three distinctly different environmental gradients were significantly associated with the underlying observed species abundances. Observed turtle abundance was explained by measurements of bathymetry, turbidity, and benthic resources, but none of these environmental variables were a reliable predictor of observed fish abundance. Temperature was a poor predictor of observed abundance for both fish and turtles independently, but when fish and turtles were considered together, it became apparent that there were cold areas of the reservoir where observed fish and turtle abundances were different than in other areas of the reservoir. These results suggest that the predictor (environmental) variables we used were appropriate for investigating turtle ecology in reservoirs, but that observed fish abundance is mediated by factors that were not modeled. The efficacy of using traps, the ecological implications of considering fish and turtles together as sympatric and potentially competing species, and directions for future study are discussed

    Design and analysis of control systems: case studies

    No full text
    This book provides methods to unify different approaches to tackle stability theory problems. In particular, it presents a methodology to blend approaches obtained from measure theory with methods obtained from Lyapunov’s stability theory. The author summarizes recent works on how different analysis/design methods can be unified and employed for systems that do not belong to either of domains of validity
    corecore