3 research outputs found

    A Quantitative Evaluation of Joint Activity and Attenuation Reconstruction in TOF PET/MR Brain Imaging

    No full text
    Time-of-flight (TOF) PET data provide an effective means for attenuation correction (AC) when no (or incomplete or inaccurate) attenuation information is available. Since MR scanners provide little information on photon attenuation of different tissue types, AC in hybrid PET/MR scanners has always been challenging. In this contribution, we aim at validating the activity reconstructions of the maximum-likelihood ordered-subsets activity and attenuation (OSAA) reconstruction algorithm on a patient brain data set. We present a quantitative comparison of joint reconstructions with the current clinical gold standard-ordered-subsets expectation maximization-using CT-based AC in PET/CT, as well as the current state of the art in PET/MR, that is, zero time echo (ZTE)-based AC. Methods: The TOF PET emission data were initially used in a preprocessing stage to estimate crystal maps of efficiencies, timing offsets, and timing resolutions. Applying these additional corrections during reconstructions, OSAA, ZTE-based, and the vendor-provided atlas-based AC techniques were analyzed and compared with CT-based AC. In our initial study, we used the CT-based estimate of the expected scatter and later used the ZTE-based and OSAA attenuation estimates to compute the expected scatter contribution of the data during reconstructions. In all reconstructions, a maximum-likelihood scaling of the single-scatter simulation estimate to the emission data was used for scatter correction. The reconstruction results were analyzed in the 86 segmented regions of interest of the Hammers atlas. Results: Our quantitative analysis showed that, in practice, a tracer activity difference of +0.5% (±2.1%) and +0.1% (±2.3%) could be expected for the state-of-the-art ZTE-based and OSAA AC methods, respectively, in PET/MR compared with the clinical gold standard in PET/CT. Conclusion: Joint activity and attenuation estimation methods can provide an effective solution to the challenging AC problem for brain studies in hybrid TOF PET/MR scanners. With an accurate TOF-based (timing offsets and timing resolutions) calibration, and similar to the results of the state-of-the-art method in PET/MR, regional errors of joint TOF PET reconstructions are within a few percentage points.status: publishe

    Multicenter validation of [<sup>18</sup>F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls

    No full text
    <p><i>Objective</i>: <sup>18</sup>F-Fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography (PET) single-center studies using support vector machine (SVM) approach to differentiate amyotrophic lateral sclerosis (ALS) from controls have shown high overall accuracy on an individual patient basis using local <i>a priori</i> defined classifiers. The aim of the study was to validate the SVM accuracy on a multicentric level.</p> <p><i>Methods</i>: A previously defined Belgian (BE) group of 175 ALS patients (61.9 ± 12.2 years, 120M/55F) and 20 screened healthy controls (62.4 ± 6.4 years, 12M/8F) was used to classify another large dataset from Italy (IT), consisting of 195 patients (63.2 ± 11.6 years, 117M/78F) and 40 controls (62 ± 14.4 years; 29M/11F) free of any neurological and psychiatric disorder who underwent whole-body <sup>18</sup>F-FDG PET-CT for lung cancer without any evidence of paraneoplastic symptoms. <sup>18</sup>F-FDG within-center group comparisons based on statistical parametric mapping (SPM) were performed and SVM classifiers based on the local training sets were applied to differentiate ALS from controls from the other centers.</p> <p><i>Results</i>: SPM group analysis showed only minor differences between both ALS groups, indicating pattern consistency. SVM using BE data set as training, classified 183/193 ALS-IT correctly (accuracy of 94.8%). However, 35/40 CON-IT were misclassified as ALS (accuracy 12.5%). Furthermore, using IT data as training, ALS-BE could not be distinguished from CON-BE. Within-center SPM group analysis confirmed prefrontal hypometabolism in CON-IT versus CON-BE, indicating subclinical brain changes in patients undergoing oncological scanning.</p> <p><i>Conclusion</i>: This multicenter study confirms that the <sup>18</sup>F-FDG ALS pattern is stable across centers. Furthermore, it highlights the importance of carefully selected controls, as subclinical frontal changes might be present in patients in an oncological setting.</p
    corecore