21 research outputs found

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    The effectiveness of a self-management occupational therapy intervention on activity performance in individuals with multiple sclerosis-related fatigue: a randomized-controlled trial

    No full text
    Purpose to evaluate the effectiveness of an individual self-management occupational therapy intervention program (SMOoTh) versus relaxation on the performance of and satisfaction with relevant daily activities in individuals with multiple sclerosis (MS)-related fatigue. in a single-blind randomized-controlled trial, 31 patients with MS (SMOoTh: n=17, relaxation: n=14) were randomly allocated to three individual sessions focusing on pacing, prioritizing, ergonomics, and self-management (SMOoTh) or on stress management and relaxation (relaxation). Outcomes (blind assessor): Canadian Occupational Performance Measure (COPM) (primary), Modified Fatigue Impact Scale, Checklist Individual Strength and Short-Form Health Measure. COPM improved in the SMOoTh and relaxation group after the intervention and 3 months later (COPM performance: F=13.1, P=0.001 and COPM satisfaction: F=10.4, P=0.001); nonsignificant group differences showed a trend in favor of SMOoTh. Modified Fatigue Impact Scale, Checklist Individual Strength, and most of the Short-Form Health Measure subscales did not change. Clinically relevant changes in COPM performance scores were found in 71 and 27% of patients in the SMOoTh versus the relaxation group. Both interventions seem to be feasible approaches to improve performance of and satisfaction with relevant daily activities in people with MS, with a sustained effect after 3 months. Neither program altered change fatigue (impact) or quality of life. Future studies with larger sample sizes are needed.status: publishe

    Except for C-C chemokine receptor 7 expression, monocyte-derived dendritic cells from patients with multiple sclerosis are functionally comparable to those of healthy controls

    Get PDF
    AbstractBackground aimsDendritic cell (DC)-based immunotherapy has shown potential to counteract autoimmunity in multiple sclerosis (MS).MethodsWe compared the phenotype and T-cell stimulatory capacity of in vitro generated monocyte-derived DC from MS patients with those from healthy controls.ResultsExcept for an increase in the number of C-C chemokine receptor 7–expressing DC from MS patients, no major differences were found between groups in the expression of maturation-associated membrane markers or in the in vitro capacity to stimulate autologous T cells.ConclusionsOur observations may pave the way for the development of patient-tailored DC-based vaccination strategies to treat MS

    Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration

    Get PDF
    Introductio: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach. Methods and analysis: Here, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients’ immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo. Ethics and dissemination: Ethics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations

    Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration

    No full text
    Introductio: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains. Specifically restoring immune tolerance towards myelin antigens may provide an attractive alternative. In this respect, antigen-specific tolerisation with autologous tolerogenic dendritic cells (tolDC) is a promising approach. Methods and analysis: Here, we will evaluate the clinical use of tolDC in a well-defined population of MS patients in two phase I clinical trials. In doing so, we aim to compare two ways of tolDC administration, namely intradermal and intranodal. The cells will be injected at consecutive intervals in three cohorts receiving incremental doses of tolDC, according to a best-of-five design. The primary objective is to assess the safety and feasibility of tolDC administration. For safety, the number of adverse events including MRI and clinical outcomes will be assessed. For feasibility, successful production of tolDC will be determined. Secondary endpoints include clinical and MRI outcome measures. The patients’ immune profile will be assessed to find presumptive evidence for a tolerogenic effect in vivo. Ethics and dissemination: Ethics approval was obtained for the two phase I clinical trials. The results of the trials will be disseminated in a peer-reviewed journal, at scientific conferences and to patient associations
    corecore