37 research outputs found

    Antibiotic Class and Outcome in Post-stroke Infections: An Individual Participant Data Pooled Analysis of VISTA-Acute

    Get PDF
    Antibiotics; Post-stroke infections; Post-stroke pneumoniaAntibiòtics; Infeccions posteriors a un accident cerebrovascular; Pneumònia posterior a un accident cerebrovascularAntibióticos; Infecciones posteriores a un accidente cerebrovascular; Neumonía posterior a un accidente cerebrovascularIntroduction: Antibiotics used to treat post-stroke infections have differing antimicrobial and anti-inflammatory effects. Our aim was to investigate whether antibiotic class was associated with outcome after post-stroke infection. Methods: We analyzed pooled individual participant data from the Virtual International Stroke Trials Archive (VISTA)-Acute. Patients with ischemic stroke and with an infection treated with systemic antibiotic therapy during the first 2 weeks after stroke onset were eligible. Antibiotics were grouped into eight classes, according to antimicrobial mechanism and prevalence. The primary analysis investigated whether antibiotic class for any infection, or for pneumonia, was independently associated with a shift in 90 day modified Rankin Scale (mRS) using ordinal logistic regression. Results: 2,708 patients were eligible (median age [IQR] = 74 [65 to 80] y; 51% female; median [IQR] NIHSS score = 15 [11 to 19]). Pneumonia occurred in 35%. Treatment with macrolides (5% of any infections; 9% of pneumonias) was independently associated with more favorable mRS distribution for any infection [OR (95% CI) = 0.59 (0.42 to 0.83), p = 0.004] and for pneumonia [OR (95% CI) = 0.46 (0.29 to 0.73), p = 0.001]. Unfavorable mRS distribution was independently associated with treatment of any infection either with carbapenems, cephalosporins or monobactams [OR (95% CI) = 1.62 (1.33 to 1.97), p < 0.001], penicillin plus β-lactamase inhibitors [OR (95% CI) = 1.26 (1.03 to 1.54), p = 0.025] or with aminoglycosides [OR (95% CI) = 1.73 (1.22 to 2.46), p = 0.002]. Conclusion: This retrospective study has several limitations including effect modification and confounding by indication. Macrolides may have favorable immune-modulatory effects in stroke-associated infections. Prospective evaluation of the impact of antibiotic class on treatment of post-stroke infections is warranted.The Open Access Publication Fund of Charité—Universitätsmedizin Berlin and Professor Meisel as corresponding author will provide funding to cover the open access publication/article processing fe

    Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection : a Prospective Case-Control Study

    Get PDF
    In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 mu M, Wilcoxonp <0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77,p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.Peer reviewe

    Hyperglycemia in bacterial meningitis: a prospective cohort study

    Get PDF
    ABSTRACT: BACKGROUND: Hyperglycemia has been associated with unfavorable outcome in several disorders, but few data are available in bacterial meningitis. We assessed the incidence and significance of hyperglycemia in adults with bacterial meningitis. METHODS: We collected data prospectively between October 1998 and April 2002, on 696 episodes of community-acquired bacterial meningitis, confirmed by culture of CSF in patients >16 years. Patients were dichotomized according to blood glucose level on admission. A cutoff random non-fasting blood glucose level of 7.8 mmol/L (140 mg/dL) was used to define hyperglycemia, and a cutoff random non-fasting blood glucose level of 11.1 mmol/L (200 mg/dL) was used to define severe hyperglycemia. Unfavorable outcome was defined on the Glasgow outcome scale as a score <5. We also evaluated characteristics of patients with a preadmission diagnosis of diabetes mellitus. RESULTS: 69% of patients were hyperglycemic and 25% severely hyperglycemic on admission. Compared with non-hyperglycemic patients, hyperglycemia was related with advanced age (median, 55 yrs vs. 44 yrs, P<0.0001), preadmission diagnosis of diabetes (9% vs. 3%, P=0.005), and distant focus of infection (37% vs. 28%, P=0.02). They were more often admitted in coma (16% vs. 8%; P=0.004) and with pneumococcal meningitis (55% vs. 42%, P=0.007). These differences remained significant after exclusion of patients with known diabetes. Hyperglycemia was related with unfavorable outcome (in a hockey stick-shaped curve) but this relation did not remain robust in a multivariate analysis. Factors predictive for neurologic compromise were related with higher blood glucose levels, whereas factors predictive for systemic compromise were related with lower blood glucose levels. Only a minority of severely hyperglycemic patients were known diabetics (19%). The vast majority of these known diabetic patients had meningitis due to Streptococcus pneumoniae (67%) or Listeria monocytogenes (13%) and they were at high risk for unfavorable outcome (52%). CONCLUSIONS: The majority of patients with bacterial meningitis have hyperglycemic blood glucose levels on admission. Hyperglycemia can be explained by a physical stress reaction, the central nervous system insult leading to disturbed blood-glucose regulation mechanisms, and preponderance of diabetics for pneumococcal meningitis. Patients with diabetes and bacterial meningitis are at high risk for unfavorable outcom

    Post-stroke infection: A systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><b>s</b>troke is the main cause of disability in high-income countries, and ranks second as a cause of death worldwide. Patients with acute stroke are at risk for infections, but reported post-stroke infection rates vary considerably. We performed a systematic review and meta-analysis to estimate the pooled post-stroke infection rate and its effect on outcome.</p> <p>Methods</p> <p>MEDLINE and EMBASE were searched for studies on post-stroke infection. Cohort studies and randomized clinical trials were included when post-stroke infection rate was reported. Rates of infection were pooled after assessment of heterogeneity. Associations between population- and study characteristics and infection rates were quantified. Finally, we reviewed the association between infection and outcome.</p> <p>Results</p> <p>87 studies were included involving 137817 patients. 8 studies were restricted to patients admitted on the intensive care unit (ICU). There was significant heterogeneity between studies (P < 0.001, I<sup>2 </sup>= 97%). The overall pooled infection rate was 30% (24-36%); rates of pneumonia and urinary tract infection were 10% (95% confidence interval [CI] 9-10%) and 10% (95%CI 9-12%). For ICU studies, these rates were substantially higher with 45% (95% CI 38-52%), 28% (95%CI 18-38%) and 20% (95%CI 0-40%). Rates of pneumonia were higher in studies that specifically evaluated infections and in consecutive studies. Studies including older patients or more females reported higher rates of urinary tract infection. Pneumonia was significantly associated with death (odds ratio 3.62 (95%CI 2.80-4.68).</p> <p>Conclusions</p> <p>Infection complicated acute stroke in 30% of patients. Rates of pneumonia and urinary tract infection after stroke were 10%. Pneumonia was associated with death. Our study stresses the need to prevent infections in patients with stroke.</p

    Immunodepression, Infections, and Functional Outcome in Ischemic Stroke

    No full text
    Stroke remains one of the main causes of mortality and morbidity worldwide. Immediately after stroke, a neuroinflammatory process starts in the brain, triggering a systemic immunodepression mainly through excessive activation of the autonomous nervous system. Manifestations of immunodepression include lymphopenia but also dysfunctional innate and adaptive immune cells. The resulting impaired antibacterial defenses render patients with stroke susceptible to infections. In addition, other risk factors like stroke severity, dysphagia, impaired consciousness, mechanical ventilation, catheterization, and older age predispose stroke patients for infections. Most common infections are pneumonia and urinary tract infection, both occur in ≈10% of the patients. Especially pneumonia increases unfavorable outcome and mortality in patients with stroke; systemic effects like hypotension, fever, delay in rehabilitation are thought to play a crucial role. Experimental and clinical data suggest that systemic infections enhance autoreactive immune responses against brain antigens and thus negatively affect outcome but convincing evidence is lacking. Prevention of poststroke infections by preventive antibiotic therapy did not improve functional outcome after stroke. Immunomodulatory approaches counteracting immunodepression to prevent stroke-associated pneumonia need to account for neuroinflammation in the ischemic brain and avoid further tissue damage. Experimental studies discovered interesting targets, but these have not yet been investigated in patients with stroke. A better understanding of the pathobiology may help to develop optimized approaches of preventive antibiotic therapy or immunomodulation to effectively prevent stroke-associated pneumonia while improving long-term outcome after stroke. In this review, we aim to characterize epidemiology, risk factors, cause, diagnosis, clinical presentation, and potential treatment of poststroke immunosuppression and associated infections

    Post-stroke infections and preventive antibiotics in stroke: Update of clinical evidence

    No full text
    This review provides an update of evidence on post-stroke infections and the use of preventive antibiotics in stroke. Infection is a common complication after stroke, affecting between 15% and 30% of the patients. The predictors for post-stroke infection can be divided into three categories: clinical factors, anatomical (stroke related) factors and immunological factors. The relation between the occurrence of a post-stroke infection and functional outcome remained subject of debate, but it seems likely that the occurrence of these infections has a causal relation with poor functional outcome and mortality. In the first meta-analysis on preventive antibiotic therapy, almost a decade ago, its beneficial effect on post-stroke infection rate was clear; however, the effect on functional outcome remained uncertain because included studies were small and heterogeneous. Afterwards, three large phase-3 RCTs were published and a Cochrane meta-analysis was performed. It has now become clear that, despite the finding that overall infections are reduced, preventive antibiotic therapy in the acute phase of stroke does neither improve functional outcome, nor decrease mortality rates. This does not yet mean that further research on preventive antibiotics in stroke is useless: the pathophysiology and etiology of post-stroke infections are unclear and the use of preventive antibiotics in specific subgroups of stroke patients could still be very effective. This is currently being studied. Besides, preventive antibiotic therapy might be cost-effective by increasing quality-adjusted life years. Thirdly, research for the upcoming years might put more emphasis on the effect of stroke on immunological alterations

    Antibiotic therapy for preventing infections in people with acute stroke

    No full text
    Stroke is the main cause of disability in high-income countries and ranks second as a cause of death worldwide. Infections occur frequently after stroke and may adversely affect outcome. Preventive antibiotic therapy in the acute phase of stroke may reduce the incidence of infections and improve outcome. In the previous version of this Cochrane Review, published in 2012, we found that antibiotics did reduce the risk of infection but did not reduce the number of dependent or deceased patients. However, included studies were small and heterogeneous. In 2015, two large clinical trials were published, warranting an update of this Review. To assess the effectiveness and safety of preventive antibiotic therapy in people with ischaemic or haemorrhagic stroke. We wished to determine whether preventive antibiotic therapy in people with acute stroke:• reduces the risk of a poor functional outcome (dependency and/or death) at follow-up;• reduces the occurrence of infections in the acute phase of stroke;• reduces the occurrence of elevated body temperature (temperature ≥ 38° C) in the acute phase of stroke;• reduces length of hospital stay; or• leads to an increased rate of serious adverse events, such as anaphylactic shock, skin rash, or colonisation with antibiotic-resistant micro-organisms. We searched the Cochrane Stroke Group Trials Register (25 June 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 5; 25 June 2017) in the Cochrane Library; MEDLINE Ovid (1950 to 11 May 2017), and Embase Ovid (1980 to 11 May 2017). In an effort to identify further published, unpublished, and ongoing trials, we searched trials and research registers, scanned reference lists, and contacted trial authors, colleagues, and researchers in the field. Randomised controlled trials (RCTs) of preventive antibiotic therapy versus control (placebo or open control) in people with acute ischaemic or haemorrhagic stroke. Two review authors independently selected articles and extracted data; we discussed and resolved discrepancies at a consensus meeting with a third review author. We contacted study authors to obtain missing data when required. An independent review author assessed risk of bias using the Cochrane 'Risk of bias' tool. We calculated risk ratios (RRs) for dichotomous outcomes, assessed heterogeneity amongst included studies, and performed subgroup analyses on study quality. We included eight studies involving 4488 participants. Regarding quality of evidence, trials showed differences in study population, study design, type of antibiotic, and definition of infection; however, primary outcomes among the included studies were consistent. Mortality rate in the preventive antibiotic group was not significantly different from that in the control group (373/2208 (17%) vs 360/2214 (16%); RR 1.03, 95% confidence interval (CI) 0.87 to 1.21; high-quality evidence). The number of participants with a poor functional outcome (death or dependency) in the preventive antibiotic therapy group was also not significantly different from that in the control group (1158/2168 (53%) vs 1182/2164 (55%); RR 0.99, 95% CI 0.89 to 1.10; moderate-quality evidence). However, preventive antibiotic therapy did significantly reduce the incidence of 'overall' infections in participants with acute stroke from 26% to 19% (408/2161 (19%) vs 558/2156 (26%); RR 0.71, 95% CI 0.58 to 0.88; high-quality evidence). This finding was highly significant for urinary tract infections (81/2131 (4%) vs 204/2126 (10%); RR 0.40, 95% CI 0.32 to 0.51; high-quality evidence), whereas no preventive effect for pneumonia was found (222/2131 (10%) vs 235/2126 (11%); RR 0.95, 95% CI 0.80 to 1.13; high-quality evidence). No major side effects of preventive antibiotic therapy were reported. Only two studies qualitatively assessed the occurrence of elevated body temperature; therefore, these results could not be pooled. Only one study reported length of hospital stay. Preventive antibiotics had no effect on functional outcome or mortality, but significantly reduced the risk of 'overall' infections. This reduction was driven mainly by prevention of urinary tract infection; no effect for pneumonia was foun

    Preventive Antibiotics in Stroke Study (PASS): A cost-effectiveness study

    No full text
    OBJECTIVE: To evaluate the cost-effectiveness of preventive ceftriaxone vs standard stroke unit care without preventive antimicrobial therapy in acute stroke patients. METHODS: In this multicenter, randomized, open-label trial with masked endpoint assessment, 2,550 patients with acute stroke were included between 2010 and 2014. Economic evaluation was performed from a societal perspective with a time horizon of 3 months. Volumes and costs of direct, indirect, medical, and nonmedical care were assessed. Primary outcome was cost per unit of the modified Rankin Scale (mRS) and per quality-adjusted life year (QALY) for cost-effectiveness and cost-utility analysis. Incremental cost-effectiveness analyses were performed. RESULTS: A total of 2,538 patients were available for the intention-to-treat analysis. For the cost-effectiveness analysis, 2,538 patients were available for in-hospital resource use and 1,453 for other resource use. Use of institutional care resources, out-of-pocket expenses, and productivity losses was comparable between treatment groups. The mean score on mRS was 2.38 (95% confidence interval [CI] 2.31-2.44) vs 2.44 (95% CI 2.37-2.51) in the ceftriaxone vs control group, the decrease by 0.06 (95% CI -0.04 to 0.16) in favor of ceftriaxone treatment being nonsignificant. However, the number of QALYs was 0.163 (95% CI 0.159-0.166) vs 0.155 (95% CI 0.152-0.158) in the ceftriaxone vs control group, with the difference of 0.008 (95% CI 0.003-0.012) in favor of ceftriaxone (p = 0.006) at 3 months. The probability of ceftriaxone being cost-effective ranged between 0.67 and 0.89. Probability of 0.75 was attained at a willing-to-pay level of €2,290 per unit decrease in the mRS score and of €12,200 per QALY. CONCLUSIONS: Preventive ceftriaxone has a probability of 0.7 of being less costly than standard treatment per unit decrease in mRS and per QALY gained
    corecore