155 research outputs found

    Strain-engineered Majorana Zero Energy Modes and {\phi}0 Josephson State in Black Phosphorus

    Get PDF
    We develop a theory for strain control of Majorana zero energy modes and Josephson effect in black phosphorus (BP) devices proximity coupled to a superconductor. Employing realistic values for the band parameters subject to strain, we show that the strain closes the intrinsic band gap of BP, however the proximity effect from the superconductor reopens it and creates Dirac and Weyl nodes. Our results illustrate that Majorana zero energy flat bands connect the nodes within the band-inverted regime in which their associated density of states is localized at the edges of the device. In a ferromagnetically mediated Josephson configuration, the exchange field induces super-harmonics into the supercurrent phase relation in addition to a {\phi}0 phase shift, corresponding to a spontaneous supercurrent, and strain offers an efficient tool to control these phenomena. We analyze the experimental implications of our findings, and show that they can pave the way for creating a rich platform for studying two-dimensional Dirac and Weyl superconductivity

    Symmetry of superconducting correlations in displaced bilayers of graphene

    Get PDF
    Using a Green's function approach, we study phonon-mediated superconducting pairing symmetries that may arise in bilayer graphene where the monolayers are displaced in-plane with respect to each other. We consider a generic coupling potential between the displaced graphene monolayers, which is applicable to both shifted and commensurate twisted graphene layers; study intralayer and interlayer phonon-mediated BCS pairings; and investigate AA and AB(AC) stacking orders. Our findings demonstrate that at the charge neutrality point, the dominant pairings in both AA and AB stackings with intralayer and interlayer electron-electron couplings can have even-parity ss-wave class and odd-parity pp-wave class of symmetries with the possibility of invoking equal-pseudospin and odd-frequency pair correlations. At a finite doping, however, the AB (and equivalently AC) stacking can develop pseudospin-singlet and pseudospin-triplet dd-wave symmetry, in addition to ss-wave, pp-wave, ff-wave, and their combinations, while the AA stacking order, similar to the undoped case, is unable to host the dd-wave symmetry. When we introduce a generic coupling potential, applicable to commensurate twisted and shifted bilayers of graphene, dd-wave symmetry can also appear at the charge neutrality point. Inspired by a recent experiment where two phonon modes were observed in a twisted bilayer graphene, we also discuss the possibility of the existence of two-gap superconductivity, where the intralayer and interlayer phonon-mediated BCS picture is responsible for superconductivity. These analyses may provide a useful tool in determining the superconducting pairing symmetries and mechanism in bilayer graphene systems

    Pseudocanalization regime for magnetic dark-field hyperlens

    Get PDF
    Hyperbolic metamaterials (HMMs) are the cornerstone of the hyperlens, which brings the superresolution effect from the near-field to the far-field zone. For effective application of the hyperlens it should operate in so-called canalization regime, when the phase advancement of the propagating fields is maximally supressed, and thus field broadening is minimized. For conventional hyperlenses it is relatively straightforward to achieve canalization by tuning the anisotropic permittivity tensor. However, for a dark-field hyperlens designed to image weak scatterers by filtering out background radiation (dark-field regime) this approach is not viable, because design requirements for such filtering and elimination of phase advancement i.e. canalization, are mutually exclusive. Here we propose the use of magnetic (μ\mu-positive and negative) HMMs to achieve phase cancellation at the output equivalent to the performance of a HMM in the canalized regime. The proposed structure offers additional flexibility over simple HMMs in tuning light propagation. We show that in this ``pseudocanalizing'' configuration quality of an image is comparable to a conventional hyperlens, while the desired filtering of the incident illumination associated with the dark-field hyperlens is preserved

    Minimal model for spoof acoustoelastic surface states

    Get PDF
    Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful
    corecore