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A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented
whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is
shown that phonon couplings exist in pairs only; either between the electric potential and the lattice displacement
coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components.
The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three
new conjectures that entirely stem from piezoelectricity in a cubic structured material slab. First, it is shown
that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that
confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric
cubic slabs. Third, it is shown that coupled acousto-optical phonons do not exist at the longitudinal-optical (LO)
phonon frequency where the dielectric constant vanishes.

DOI: 10.1103/PhysRevB.92.224101 PACS number(s): 63.20.−e, 77.65.−j

I. INTRODUCTION

Optical and acoustic phonons play a key role in the
dissipation mechanisms of quantum electronic systems and
determine the thermal and electrical properties of solids. While
electron-phonon interactions usually lead to performance
degradation of devices, they may also open up possibilities to
tune device characteristics by virtue of material and geometry
design and appropriate control of ambient properties as well
as external parameters. Recent examples of phonon tuning
applications include the realization of population inversion
in InGaAs quantum dot systems [1–3] and phonon-assisted
gain in semiconductor quantum dot masers [4–6]. It was
demonstrated in Refs. [7,8] that phonon reservoirs signifi-
cantly influence dephasing mechanisms [9–11] in quantum
dot cavity systems with strong implications for potential
applications in quantum information technology (QIT) [12].
Dephasing is a limiting factor for QIT since it destroys the
entanglement between light and matter [7]. Some other recent
phenomena where optical and acoustic phonon interactions
are central include dissipation mechanisms in graphene and
consequences for new graphene-based electronic and optical
devices [13–15].

Piezoelectricity is important for applications and the under-
standing of phonon interactions in 3D and 2D semiconductor
materials lacking inversion symmetry. A recent discussion of
piezoelectric applications in 2D (monolayer) MoS2 can be
found in Ref. [16]. Acoustic phonon limited mobility in 2D
MoS2 was addressed theoretically in Ref. [17]. Graphene-
based devices using GaAs as a substrate reveal significant
influence at low temperatures on relaxation mechanisms due
to piezoelectric surface acoustic phonon scattering originating
from the substrate [18–21]. Another example is piezoelec-
tric surface acoustic generation and manipulation that show

promising potential in both quantum phononics [22,23] and
plasmonics [24,25].

In this paper we present a detailed treatment of phonons
in semiconductors and a full accounting of crystal anisotropy
and inversion-asymmetry effects including piezoelectricity for
structures based on, e.g., zincblende or wurtzite symmetries
such as GaAs, GaN, and ZnO materials or 2D materials
including MoS2 and BN [26]. It is demonstrated in a first
unified approach that optical and acoustic phonons are inher-
ently coupled in piezoelectric materials, and we compare with
the existing literature in the field where optical and acoustic
phonons are treated separately [27–31]. This coupling of op-
tical and acoustic phonons is important for the understanding
of electron-phonon interaction selection rules in piezoelectric
materials and, e.g., Raman scattering processes. By solving
the fully coupled system we obtain, in one step, the acoustic
and optical phonon modes and determine to what extent they
are coupled. It will be shown that in piezoelectric cubic
materials acoustic phonon couplings exist entirely between
two of the lattice displacement coordinates (ux and uz) similar
to the case of nonpiezoelectric cubic materials. An additional
pair coupling is shown to exist between the third lattice
displacement coordinate (uy) and the electric potential (φ)
by virtue of the piezoelectric effect. Hence optical phonons
are generally always coupled to acoustic phonons. Choosing
a cubic piezoelectric slab as an example, we demonstrate
that only coupled acousto-optical phonon modes are allowed
unless the phonon in-plane wave-number component vanishes.
We show that coupled acousto-optical phonons cannot exist
at the LO phonon frequency where the dielectric constant
vanishes. Further, it is proven that confined acousto-optical
phonon modes cannot exist at any frequency in a piezoelectric
slab. These findings are both qualitatively and quantitatively
different from the standard nonpiezoelectric result.
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II. THEORY

From the elastic equations and the Maxwell-Poisson equa-
tion of a piezoelectric cubic material, we obtain the following
set of differential equations in the lattice displacements
ux,uy,uz and the electric potential φ [32]:

(
−q2

x c11 + c44
∂2

∂z2
+ ρω2

)
ux + iqx(c12 + c44)

∂uz

∂z
= 0,

(1)(
−q2

x c44 + c44
∂2

∂z2
+ ρω2

)
uy + 2iqxe14

∂φ

∂z
= 0, (2)

iqx(c12 + c44)
∂ux

∂z
+

(
−q2

x c44 + c11
∂2

∂z2
+ ρω2

)
uz = 0,

(3)

2iqxe14
∂uy

∂z
+ ε11

(
q2

x − ∂2

∂z2

)
φ = 0, (4)

where c11,c12,c44 are the three independent stiffness compo-
nents and e14, ρ, ε11, and qx are the piezoelectric constant, the
mass density, the permittivity, and the phonon wave-number
component in the slab plane, respectively. We have followed
the common choice where the x axis is directed along the
phonon in-plane wave-number component, i.e., qy = 0 [29].

It is clear from the structure of the differential equations
above that two solution types (I and II) for ux and uz are
possible. For the type-I modes, we have [apart from a factor
exp(iωt)]

ux =
2∑

j=1

Ax,j cos γjz, uz =
2∑

j=1

Az,j sin γjz, (5)

and for type-II modes

ux =
2∑

j=1

Bx,j sin γjz, uz =
2∑

j=1

Bz,j cos γjz. (6)

The above two types correspond to compressional (dilata-
tional) and flexural modes, respectively, and they are known
as Rayleigh-Lamb modes in the case of an isotropic slab.

Similarly, two solution forms exist for acousto-optical
phonon modes. For type-I modes

uy = Ay,1 cos (δ1z) + Ay,2 cosh (δ2z), (7)

φ = Aφ,1 sin (δ1z) + Aφ,2 sinh (δ2z), (8)

and for type-II modes

uy = By,1 sin (δ1z) + By,2 sinh (δ2z), (9)

φ = Bφ,1 cos (δ1z) + Bφ,2 cosh(δ2z). (10)

We note that the phonon wave vector z components γj and
δj (j = 1,2) are obtained from the secular equation of the
differential equation system in Eqs. (1)–(4) [32]. Combining

Eqs. (1) and (5) we obtain for the type-I acoustic modes

Az,j = c44γ
2
j + q2

x c11 − ρω2

iγjqx(c12 + c44)
Ax,j (j = 1,2). (11)

For the slab problem with boundaries at ±a/2 the stress
tensor fulfills

Txz(z = ±a/2) = 0, Tzz(z = ±a/2) = 0. (12)

Use of the constitutive equations and Eq. (5) gives for type-I
modes

2∑
j=1

−γjAx,j sin

(
γj

a

2

)
+ iqxAz,j sin

(
γj

a

2

)
= 0, (13)

2∑
j=1

iqxc12Ax,j cos

(
γj

a

2

)
+ γjc11Az,j cos

(
γj

a

2

)
= 0.

(14)

Solving the 4×4 determinental equation in the four unknowns
Ax,1,Ax,2,Az,1,Az,2 leads to the dispersion relations (qx,ωn)
for type-I acoustic phonons as well as the coupled (ux,uz)
phonon modes. A similar procedure can be used to determine
the type-II phonon modes.

Next, consider the coupled uy − φ phonon modes. Com-
bining instead Eqs. (4), (7), and (8), we obtain for the type-I
modes acousto-optical phonon modes

2iqxe14[−δ1Ay,1 sin(δ1z) + δ2Ay,2 sinh(δ2z)]

+ ε11
(
q2

x + δ2
1

)
Aφ,1 sin(δ1z)

+ ε11
(
q2

x − δ2
2

)
Aφ,2 sinh(δ2z) = 0 (j = 1,2). (15)

The appropriate acoustic boundary condition is

Tyz(z = ±a/2) = c44
∂uy

∂z
+ e14

∂φ

∂x

∣∣∣∣
z=±a/2

= 0, (16)

giving

−c44δ1Ay,1 sin

(
δ1

a

2

)
+ c44δ2Ay,2 sinh

(
δ2

a

2

)

+ e14iqxAφ,1 sin

(
δ1

a

2

)
+ e14iqxAφ,2 sinh

(
δ2

a

2

)
= 0.

(17)

Two electric boundary conditions are needed since the
electric field outside the slab must be taken into account
as well. For vacuum environments, the Maxwell-Poisson
equation simply reads, if |z| > a/2,

−ε0∇2φ = ε0

(
q2

x − ∂2

∂z2

)
φ = 0, (18)

with the solution

φ(z) = φ+e−|q‖|zeiq‖·r if z > a/2, (19)

φ(z) = φ−e|q‖|zeiq‖·r if z < −a/2. (20)

Continuity of the transverse electric field at z = ±a/2
yields for type-I acousto-optical phonon modes

φ+ = Aφ,1 sin
(
δ1

a
2

) + Aφ,2 sinh
(
δ2

a
2

)
e−|q‖|a/2

, φ− = −φ+. (21)
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Imposing continuity of the normal electric displacement at
the slab boundaries gives for type-I modes

−ε11

[
δ1Aφ,1 cos

(
δ1

a

2

)
+ δ2Aφ,2 cosh

(
δ2

a

2

)]

+e14iqx

[
Ay,1 cos

(
δ1

a

2

)
+ Ay,2 cosh

(
δ2

a

2

)]

= ε0φ+|q‖|e−|q‖|a/2. (22)

The above set of equations completely specifies the type-I
acousto-optical phonon modes. We note that the procedure for
determining type-II modes goes along the same steps. Since the
electric field E = −∇φ, the ionic displacement uion =u+− u−
can be found from the Born-Huang equations [33]

uion = −
√

	

mr

√
ε(0) − ε(∞)ωT O

ω2 − ω2
T O

E, (23)

where 	 and mr are the unit cell volume and reduced ion mass,
respectively. Hence, the present coupled phonon formalism
allows determination of the lattice displacement u and the
internal ion displacement uion simultaneously.

Finally, to completely specify the phonon mode solutions,
coupled normalization conditions are needed:∫

dr
[√

mr

	
u∗

ion(r,t)
][√

mr

	
uion(r,t)

]

+
∫

dr[
√

ρu∗(r,t)][
√

ρu(r,t)] = �

2ωn

, (24)

where ωn is the phonon mode frequency. An important result
that distinguishes piezoelectric materials from nonpiezoelec-
tric materials can now be proved. We will show that at the
LO phonon frequency where the permittivity is zero coupled
acousto-optical phonon modes cannot be excited. In contrast,
in nonpiezoelectric media confined optical phonon modes with
an arbitrary in-plane wave number qx exist at the LO phonon
frequency.

First, if ε11 = 0, Eq. (4) shows that

uy = Aye
iqxx . (25)

Then Eqs. (2) and (16) yield

φ = (φ0 + φ1z)eiqxx, φ0 = φ1 = 0. (26)

Continuity of the transverse electric field component guaran-
tees further that

φ+ = φ− = 0, (27)

and finally, from continuity in the normal electric displace-
ment, we obtain

Ay = 0. (28)

Hence, both the electric potential φ and the phonon uy

component must be zero simultaneously. In other words, it is
not possible to excite coupled uy − φ modes at the LO phonon
frequency. It is well known that confined LO phonon modes
exist at the LO phonon frequency. We will now prove that
confined coupled acousto-optical uy − φ modes cannot exist in
piezoelectric media except at certain discrete qx wave-number
values.

A confined phonon mode is characterized by an electric
field that vanishes at the slab interfaces. Thus, coupled uy − φ

solutions can be sought quite generally in the form (type I
modes)

uy = Ay cos

(
mπ

a
z

)
eiqxx, φ = Aφ sin

(
mπ

a
z

)
eiqxx, (29)

where m = 2,4,6, . . . . From Eq. (2) we have(
−q2

x c44 −
(

mπ

a

)2

c44 + ρω2

)
Ay + 2iqxe14

(
mπ

a

)
Aφ =0,

(30)

and from Eq. (4)

−2iqxe14

(
mπ

a

)
Ay + ε11

(
q2

x +
(

mπ

a

)2)
Aφ = 0. (31)

Hence the possible mode frequencies are

ωm =
√

c44

ρ

[
q2

x +
(

mπ

a

)2

+ 4q2
x e

2
14

(
mπ
a

)2

ε11c44
(
q2

x + (
mπ
a

)2)
]1/2

. (32)

It follows immediately from the preceding equations that
Eq. (16) is fulfilled. Continuity in the transverse electric field
and normal displacement yields φ+ = 0 and

Aφ = iqxe14

ε11(−1)m/2
(

mπ
a

)Ay. (33)

Combining Eqs. (31) and (33) requires

2(−1)m/2

(
mπ

a

)2

= q2
x +

(
mπ

a

)2

, (34)

which is possible only at certain discrete qx values {qx,m}.
Hence we have proven the conjecture that confined coupled
uy − φ phonon modes cannot exist in piezoelectric media
except at certain discrete wave-number values, in contrast
to the case of nonpiezoelectric media where confined optical
phonon modes exist for any in-plane wave number qx .

III. DISCUSSIONS

Consider first the influence of anisotropy on the phonon
dispersion for the coupled ux − uz lattice displacement
components in a cubic piezoelectric GaAs slab. The phys-
ical properties of GaAs are c11 = 11.88×1010 Pa, c12 =
5.38×1010 Pa, c44 = 5.94×1010 Pa, ρ = 5.318×103 kg/m3,
e14 = 0.154 C/m2, ε(0) = 12.9ε0, �ωLO = 33.2 meV,

�ωT O = 36.1 meV, ε∞ = ε(0)ω2
T O

ω2
LO

.

Since all cubic materials are anisotropic, the isotropic
relation

c44 = c11 − c12

2
(35)

used for GaAs in, e.g., Ref. [29] is an approximation. In fact,
the degree of anisotropy, defined as

α =
∣∣∣∣∣

c11−c12
2 − c44

c44

∣∣∣∣∣, (36)
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FIG. 1. (Color online) Dispersion relations for the coupled
ux − uz acoustic phonon modes of a 2 nm GaAs slab. (Upper plot)
GaAs and (lower plot) GaAs but using the isotropic assumption:
c44 = c11−c12

2 = 3.25×1010 Pa. The first axis is qxa and the second
axis the phonon band energy in meV.

is large in GaAs and equal to 45%. Hence, substantial
deviations in the phonon modes and dispersion relations due
to anisotropy must be expected for GaAs. In passing, we note
that it follows from the results above that unit-cell inversion
asymmetry and piezoelectricity do not influence the ux − uz

phonon modes and dispersion.
In Fig. 1 the coupled ux − uz dispersion curves are shown

for a 2 nm GaAs slab. Evidently, the phonon mode energies
change markedly when including the full anisotropy (by more
than 40% for the first band energy at qxa = 0) and so does the
shape of the dispersion curves.

Next, let us consider the dispersion curves for coupled
uy − φ acousto-optical phonon modes.

In Fig. 2 the uy − φ dispersion curves are shown for a
2 nm GaAs slab. It is evident that the coupled acousto-optical
phonon modes are strongly influenced by anisotropy, as in
the case with the coupled acoustic ux − uz phonons, leading
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FIG. 2. (Color online) Dispersion relations for the coupled
uy − φ acousto-optical phonon modes of a 2 nm GaAs slab. (Upper
plot) GaAs including piezoelectricity and anisotropy and (lower
plot) GaAs but using the isotropic non-piezoelectric assumption:
c44 = c11−c12

2 = 3.25×1010 Pa and e14 = 0.

to a difference of about 40% in the first band energy near
qxa = 0. Moreover, a close inspection of the dispersion curves
around the LO phonon energy of 36.1 meV reveals that, when
piezoelectricity is included and for any strictly positive qxa

value, no band crosses the forbidden LO phonon energy, in
agreement with the proof given above.

It must be noted that interface phonons are not captured in
the plots as they correspond to imaginary qx values, but the
procedure for finding them is the same as for nonpiezoelectric
and isotropic media [27].

A combined treatment of coupled acoustic and optical
phonons in piezoelectric cubic media was presented that
allows determination of the lattice displacement vector and
the internal ionic displacement vector simultaneously. It was
demonstrated that phonons generally exist in pairs due to
couplings between either the lattice displacement component
perpendicular to the phonon wave vector (uy coordinate) and
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the electric potential φ or the two other lattice displacement
components (ux and uz). Three new conjectures were derived
for piezoelectric cubic slabs: (1) isolated optical phonon modes
cannot exist unless the in-plane phonon wave number vanishes
(qx = 0); (2) we proved that confined acousto-optical phonon
modes only exist in piezoelectric cubic slabs for a discrete set
of in-plane wave numbers; (3) at the LO phonon frequency
coupled acousto-optical phonons cannot exist. We point out

that the present method can be generalized along the same lines
to other piezoelectric materials such as piezoelectric hexagonal
(wurtzite) materials.
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Axt, A. J. Ramsay, M. S. Skolnick, and A. M. Fox, Phys. Rev.
Lett. 114, 137401 (2015).

[2] A. E. Siegman, Lasers (University Science Books, Oxford,
1986).
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