325 research outputs found

    Strain-engineered Majorana Zero Energy Modes and {\phi}0 Josephson State in Black Phosphorus

    Get PDF
    We develop a theory for strain control of Majorana zero energy modes and Josephson effect in black phosphorus (BP) devices proximity coupled to a superconductor. Employing realistic values for the band parameters subject to strain, we show that the strain closes the intrinsic band gap of BP, however the proximity effect from the superconductor reopens it and creates Dirac and Weyl nodes. Our results illustrate that Majorana zero energy flat bands connect the nodes within the band-inverted regime in which their associated density of states is localized at the edges of the device. In a ferromagnetically mediated Josephson configuration, the exchange field induces super-harmonics into the supercurrent phase relation in addition to a {\phi}0 phase shift, corresponding to a spontaneous supercurrent, and strain offers an efficient tool to control these phenomena. We analyze the experimental implications of our findings, and show that they can pave the way for creating a rich platform for studying two-dimensional Dirac and Weyl superconductivity

    Symmetry of superconducting correlations in displaced bilayers of graphene

    Get PDF
    Using a Green's function approach, we study phonon-mediated superconducting pairing symmetries that may arise in bilayer graphene where the monolayers are displaced in-plane with respect to each other. We consider a generic coupling potential between the displaced graphene monolayers, which is applicable to both shifted and commensurate twisted graphene layers; study intralayer and interlayer phonon-mediated BCS pairings; and investigate AA and AB(AC) stacking orders. Our findings demonstrate that at the charge neutrality point, the dominant pairings in both AA and AB stackings with intralayer and interlayer electron-electron couplings can have even-parity ss-wave class and odd-parity pp-wave class of symmetries with the possibility of invoking equal-pseudospin and odd-frequency pair correlations. At a finite doping, however, the AB (and equivalently AC) stacking can develop pseudospin-singlet and pseudospin-triplet dd-wave symmetry, in addition to ss-wave, pp-wave, ff-wave, and their combinations, while the AA stacking order, similar to the undoped case, is unable to host the dd-wave symmetry. When we introduce a generic coupling potential, applicable to commensurate twisted and shifted bilayers of graphene, dd-wave symmetry can also appear at the charge neutrality point. Inspired by a recent experiment where two phonon modes were observed in a twisted bilayer graphene, we also discuss the possibility of the existence of two-gap superconductivity, where the intralayer and interlayer phonon-mediated BCS picture is responsible for superconductivity. These analyses may provide a useful tool in determining the superconducting pairing symmetries and mechanism in bilayer graphene systems

    Pseudocanalization regime for magnetic dark-field hyperlens

    Get PDF
    Hyperbolic metamaterials (HMMs) are the cornerstone of the hyperlens, which brings the superresolution effect from the near-field to the far-field zone. For effective application of the hyperlens it should operate in so-called canalization regime, when the phase advancement of the propagating fields is maximally supressed, and thus field broadening is minimized. For conventional hyperlenses it is relatively straightforward to achieve canalization by tuning the anisotropic permittivity tensor. However, for a dark-field hyperlens designed to image weak scatterers by filtering out background radiation (dark-field regime) this approach is not viable, because design requirements for such filtering and elimination of phase advancement i.e. canalization, are mutually exclusive. Here we propose the use of magnetic (μ\mu-positive and negative) HMMs to achieve phase cancellation at the output equivalent to the performance of a HMM in the canalized regime. The proposed structure offers additional flexibility over simple HMMs in tuning light propagation. We show that in this ``pseudocanalizing'' configuration quality of an image is comparable to a conventional hyperlens, while the desired filtering of the incident illumination associated with the dark-field hyperlens is preserved

    Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3\text{Bi}_2\text{Se}_3-class of topological insulators

    Get PDF
    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3\text{Bi}_2\text{Se}_3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of Bi2Se3\text{Bi}_2\text{Se}_3. For the most experimentally relevant surface termination we analytically derive the surface state spectrum, revealing an anisotropic Dirac cone with elliptical constant energy counturs giving rise to different velocities in different in-plane directions. The spin-momentum locking of strained Bi2Se3\text{Bi}_2\text{Se}_3 is shown to be modified and for some strain configurations we see a non-zero spin component perpendicular to the surface. Hence, strain control can be used to manipulate the spin degree of freedom via the spin-orbit coupling. We show that for a thin film of Bi2Se3\text{Bi}_2\text{Se}_3 the surface state band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the surface state band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions for the effective mass tensor of the Bi2_2Se3_3 class of materials as a function of strain and electric field

    Dynamic Coupling of Piezoelectric Effects, Spontaneous Polarization, and Strain in Lattice-Mismatched Semiconductor Quantum-Well Heterostructures

    Get PDF
    A static and dynamic analysis of the combined and self-consistent influence of spontaneous polarization, piezoelectric effects, lattice mismatch, and strain effects is presented for a three-layer one-dimensional AlN/GaN wurtzite quantum-well structure with GaN as the central quantum-well layer . It is shown that, contrary to the assumption of Fonoberov and Balandin [J. Appl. Phys. 94, 7178 (2003); J. Vac. Sci. Technol. B 22, 2190 (2004)], even in cases with no current transport through the structure, the strain distributions are not well captured by minimization of the strain energy only and not, as is in principle required, the total free energy including electric and piezoelectric coupling and spontaneous polarization contributions. Furthermore, we have found that, when an ac signal is imposed through the structure, resonance frequencies exist where strain distributions are even more strongly affected by piezoelectric-coupling contributions depending on the amount of mechanical and electrical losses in the full material system
    corecore