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Abstract

Based on group theoretical arguments we derive the most general Hamiltonian for the Bi,Se;-class of
materials including terms to third order in the wave vector, first order in electric and magnetic fields,
first order in strain and first order in both strain and wave vector. We determine analytically the effects
of strain on the electronic structure of Bi,Ses. For the most experimentally relevant surface
termination we analytically derive the surface state (SS) spectrum, revealing an anisotropic Dirac cone
with elliptical constant energy contours giving rise to a direction-dependent group velocity. The spin-
momentum locking of strained Bi,Se; is shown to be modified. Hence, strain control can be used to
manipulate the spin degree of freedom via the spin—orbit coupling. We show that for a thin film of
Bi,Se; the SS band gap induced by coupling between the opposite surfaces changes opposite to the
bulk band gap under strain. Tuning the SS band gap by strain, gives new possibilities for the
experimental investigation of the thickness dependent gap and optimization of optical properties
relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical
expressions for the effective mass tensor of the Bi,Se; class of materials as a function of strain and
electric field.

1. Introduction

Topological insulators have an inverted band gap which engenders topologically protected surface states (SS).
Exhibiting linear dispersion, the electrons at the surface resemble massless helical Dirac fermions, with spin
locked to the momentum. The prime examples of three-dimensional topological insulators are among
Bi,Se;-class of materials [ 1]. This class, also known as the tetradymite group, contains compounds M,X; where
M s either Bi or Sb and X is a combination of Se, S and Te. The crystal structure consists of unit layers of five
atomic layers, so-called quintuple layers (QL). For the simplest case of a (111) surface termination, where the
surface is parallel to the quintuple layer, the Dirac cone is fully isotropic for small in-plane momentum,
perturbed only by a hexagonal warping to third order in momentum [2]. For other surface terminations the
Dirac cone of the SS becomes anisotropic with elliptical curves of constant energy, as reported for the (221)
surface in [3]. Anisotropic Dirac fermions have interesting transport properties due to the different group
velocity in different directions [4], and have attracted attention in other Dirac materials [5, 6].

For both fundamental research and applications it is interesting to be able to tune the physical properties of
these materials. One way to do this is by the application of strain. It was reported in [7-9] that strain strongly
affects the band gap at the I' point of bulk Bi,Ses, and could even close the gap at large strain values, i.e. induce a
topological phase transition. Whether this is possible to achieve in real materials is not known, but a recent study
points to the feasibility of strain induced effects in Bi,Se; where strain up to 3% was induced by lattice
mismatch [10].

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. For unstrained Bi,Se; the linear dispersion of the helical surface states is isotropic in the plane to linear order in the wave
vector. In the case of strain, the in-plane rotational symmetry is broken by terms to first order in both strain and wave vector leading to
a Dirac cone with elliptical contours of constant energy, here shown for ¢, = 5%. Hence, the group velocity of the surface electrons
becomes dependent on the direction. The broken rotational symmetry also allows for a spin component perpendicular to the surface,
as shown by the red arrows.

In this paper, we use the method of invariants [11] to derive the most general Hamiltonian at the I point to
third order in wave vector, first order in strain, first order in electric and magnetic fields as well as terms to first
order in both wave vector and strain. The allowed third order terms in the wave vector include three terms that
were neglected in a previous analysis [ 12]. Since this model is based solely on the symmetry of the crystal, it is
valid for all materials in the Bi,Sej; class.

Using this model, we determine analytical expressions for the modified bulk band structure and the effective
mass tensor near the I'-point. Changes in the effective mass tensor with strain and electric field are important for
transport and optical properties [13]. Comparing the strain dependence of the band gap to recent density
functional theory (DFT) calculations, allows us to determine some of the strain related parameters in the band
structure. From this bulk spectrum, we go on to investigate the effects of strain on the SS of a semi-infinite
topological insulator. We analytically derive the spectrum of the SS, applying hard-wall boundary conditions at
the surface for a semi-infinite topological insulator with a (111) surface termination. In contrast to the
unstrained case, the full in-plane rotational symmetry to linear order in wave vector is broken by terms linear in
both strain and wave vector, leading to an anisotropic Dirac spectrum. The spin expectation values of the SS are
calculated, and it is shown that the spin-momentum locking is affected by strain, revealing a non-zero spin
component perpendicular to the surface. The modified Dirac cone and spin structure of the SS is shown in
figure 1. Finally, we show that strain affects the localization of the SS wave functions and thereby the band gap
arising in thin films due to the coupling between SS on opposite surfaces. We show that the SS band gap changes
oppositely to the bulk band gap under strain: increasing the bulk band gap, localizes the SS and decreases the SS
band gap, and vice versa. This shows that not only the bulk, but also the SS band gap can be tuned via strain.

2. Model Hamiltonian

In line with [12], we wish to derive a 4-band model Hamiltonian describing the Bi,Se; class, which now includes
all allowed terms to orders cubic in the wave vector k, linear in the strain tensor €;;, linear in magnetic field B or
electric field E, and linear in both k and ¢;;.

Ingeneral any4 x 4 Hamiltonian can be written in terms of Dirac I matrices defined in terms of the Pauli
matrices by:

h=0a®n Lh=w®n L=0n®n L=0op®n L=0p®mn (D

and their commutators I}; = %[E», I;]. Ageneral 4 x 4 matrix can then be written:

5
H, =¢cl + Zd,n + Z%‘E‘p 2)
i=1 ij
where the coefficients ¢, dj, dj; must be real to ensure hermiticity. In the present case the coefficients are functions
of k, €, Band E.
Here we use the basis | P17, %), —i|P23, %), |P1t, — %>, i|P27, — %>, derived from the p orbitals of the Biand

Se atoms. The upper sign denotes the inversion eigenvalue and the :I:% the total angular momentum. For a more

2
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Table 1. Multiplication table for the irreducible representations of the
group D5, (), and the coupling constants for the basis functions of the
relevant products I'? @ I'® (b)and T'® @ I'®, (). Note that the
multiplication table is completely general since it is in principle
concerning equivalence classes of representations, while the coupling
constants are only valid for a specific representation, here the
representation with basis functions {k, k_}. Adopted from [16].

(@)
® F(l) F<2) F(3)
F(l) F(l) F(Z) F(3)
F(Z) F(Z) F(l) F(3)
F(3) F(3) F<3) F(l) ) F(Z) ) F(3)
(b)
u(Z)V(13) u(z)vz(s)
e i 0
3 0 i
(©)
u®y® U@y u®y® u@®y®
(1) € 1
P 0 el 7 0
@ i i
¥ 0 NG N 0
P 0 0 0 1
Y 1 0 0 0

complete discussion see [12]. In this basis the o matrices do not represent spin, but are related to spin by:

O'1®7'3 O'2®T3 0'3®7'0
= 5= —— = ——, 3
2 2 2
asnotedin [14].
In this basis, the transformation operators corresponding to the symmetries of the crystal are inversion
I = 0 ® T3, three-fold rotation around the z-axis R; = ¢™/? ® 7, two fold rotation around the x-axis R, = i
01 ® T3 and time-reversal T = i(0, ® To)K, where K is the complex conjugation operator. Now the I'-matrices

can be characterized by their irreducible representation under the group D5 as well as their eigenvalues under I
and T.

2.1. Group theory

Next, we construct polynomials in wave vector, strain, electric and magnetic fields transforming according to the
irreducible representations of the group Ds,,. This group is a direct product group of D5 with the group of the
inversion operator. Here we will consider D; separately and simply add inversion eigenvalues as well as time-
reversal eigenvalues. The group D; has three irreducible representations: ", which is the trivial representation,
I'®, which is one-dimensional as well and the two-dimensional representation ',

The wave vector component k, transforms according to the one-dimensional representation T'®, i.e. it only
changes by multiplication of a constant under the transformations of D3. The in-plane components, k. and k,,
transform according to the two-dimensional irreducible representation I'®. Here we will use the basis {k., k_},
where k.. = k, + ik,. As an example we will show how to construct the second order terms transforming
according to irreducible representations including only in-plane momentum. First we note that

rO®er®=r0e¢r®qere, (4)

i.e. the second order terms of in-plane momenta transform according to a representation equivalent to the sum
of these three irreducible representations. The basis functions for the irreducible representations can be formed
using table 1(c), with {uy, u,} = {v1,v2} = {k,,k_}, and we get:

1 1
ro. O=_—fk. k_ + —k_k k?, 5
(0 B + B + XK (5)
ro; o — gk 4 ek, —o, 6
/(/} /—2 + \/E + ( )
o . {1%3)’ ¢(23)} _ {kz’ ki}’ (7)
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Table 2. Polynomials ofk, strain and magnetic fields and the I matrices
under the transformations of the group Ds, inversion and time reversal.
To simplify the notation we have introduced ) = €. + €,

€4 = € — € £ 26y, 6,4 = €, T i€,y Inthe 2-dimensional
representations we have changed basis to I’/ = T} + il’j. These have
been constructed such that they are real, and each pair is hermitian
conjugates of each other and the pairs transform like { k., k_} under the

group Ds.
T I F(]) F(Z) 1“(3)
dim = 1 dim = 1 dim = 2
- - Re(k?) k, {ke k)
Im(kse;) k! kit ko)
Re(k e) kifk. k2 {ks, k_}
Ly Im(k3) {ik. k%, —ik.k}}
€z kz €2z {k+’ k,}
fsz 6”{k+, k,}
Re(k+fz—) kz { €245 fzf}
Im(k €,) k,{ie_, —iey}
B {ik_e, , —ikie,y)
{k75+> k+67}
(T2, %)
+ + k2 {ik, k., —ik,k_}
ke (k2 k3)
€, {ifz+) —ie,_}
6” {ff) 5+}
I
—+ — F45 Ez {E+a E—}
I35 (iT3>%, -l
— + B, {B:, B_}
11:12 (D132, 12331
34 (Dl424) 1424

where we have defined kH2 =kZ+ kyz. Since {uy, s} = {v;,v,} the® term is simply 0, and we have 3
independent second order terms in the in-plane momenta: k||2, which is invariant, and the pair {k2, k}}
transforming according to the two-dimensional irreducible representation I'®. The inversion and time-reversal
eigenvalues follow the simplerule+ ® + = +and &+ ® F = —. Proceedinglike this we can go to any desired
order, and include external fields as well. We note that the strain tensor €;; transforms as k;k; [15]. This result
follows from the definition of strain

6 — l[aui + %), (8)

T olox  ox

where u is the displacement vector. The resulting irreducible basis functions are summarized in table 2.

2.2.Model Hamiltonian
For the Hamiltonian to be invariant under the group D; it can only contain terms from the invariant
representation, ", As seen in the multiplication table 1(a), " terms can only be formed by combining terms
from the same irreducible representation. For invariance under inversion () and time-reversal (TR), we must
combine terms and matrices with the same eigenvalues, i.e. from the same cell in table 2. For the I'®’
representation we can use table 1(c) to construct an invariant term, I'"’ and I'® are 1 dimensional so we simply
take the product.

For example, the terms {ik, k2, —ik, kf} belong to the irreducible representation I'® and are odd under

both TR and I. The pair of matrices {Fﬁr’z, I':2), defined as Fit] =I; £ilj, transform exactly the same way, and
using table 1(c) we can therefore combine them as follows:

1 1
T M = —ijk, k2T — —ik, k2%
AN NoRaak
ok, (ik2TH — ik7T1A). ©)
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This forms an invariant, and thus it is an allowed term in the Hamiltonian. Any multiple of this term is of course
also an invariant, and we get a free parameter in front, which we denote Z;. Proceeding this way we achieve the
following Hamiltonian, for now excluding electric and magnetic fields:

M B 0 afk
Biki =M ofk; 0

aiki M =Bk
aki 0 =Bk —-M
— ZiRe(k)Ty + Z, Im(k) T3

Hp= &+

+ Z3k, (ik2Th% — ikIT}P), (10)
where repeated indices are summed over and where:
&= C+ Cez + Cre+ Dik} + Dok, (11a)
M =M + M, + My — Bik} — Bykp, (11b)
o = Ay + Asi€,;, + A+ Azskzz + A24k||2 +i¥36,- + Yaey, (11¢)
a = iAy + 1Ay €, + iAn € + iApk? + i1‘\24k||2 + Y36, — 1Y€y, (11d)
as = Y +iYe, (11e)
B = Xiezx + 2X56 — X336, + iXy(e — €), (11f)
Br =Xz + Xo(exx — €5y) + X365 — 2iX46€y, (11g)
Bs = A + A€ + Ang + Aiskl + A14k||2» (11h)

with €| = € + €, €4 = € — €, £ 2i€y, €, &+ = €, £ i€, From the method of invariants it follows that all
model parameters designated by capital roman letters must be real parameters, which are not determined by the
symmetries of the crystal. The Hamiltonian above contains all allowed terms to third order in k, first order in
strain and terms first order in both. Neglecting strain, this Hamiltonian reduces to the one derived in [12], except
for three terms combining the in-plane and out-of-plane components of the wave vector, kZ(k, I'>* + k_T'}?),
ki k.T3and k, (ik*I">* — ik?T'}?), which were notincluded in [12]. The k independent strain terms depend only
on ¢ and €,,, and are either proportional to the identity matrix or I's. Hence, the effects of these terms can be
described within the unstrained model by making the parameters strain-dependent M — M(¢€) and

C — C(e), where:

M(e) = M + Mie,, + Mye, (12a)
Cle) = C + Gey + Cagy (12b)

Similarly the terms linear in k and ¢ or €., can be described by strain-dependent model parameters in the
unstrained model. The shear strain terms and the terms with €, — ¢, give new terms linear in k, which cannot
be described by making the parameters of the unstrained model strain-dependent. The effects of ¢, are similar
to the effects of ¢, since they contribute to the real parts of 3, o, and a3 and the imaginary parts of a;; and 3.
For the same reason €, — ¢,,,and ¢, have similar effects. As we demonstrate below, the new terms linear in the
wave vector give rise to new physics at the (111) surface of a semi-infinite topological insulator.

Higher order terms in strain will always be both inversion and time-reversal symmetric, and in table 2 we see
that the only matrices symmetric under both Iand TR are the identity matrix and I's, and k-independent strain
terms may therefore be lumped into the strain-dependent parameters M(e)and C(¢).

2.3. Magnetic field
The Hamiltonian in equation (10) is invariant under both TR and inversion, thus all bands are doubly
degenerate. The TR symmetry can be broken by a magnetic field, which must be included in the following form:

&,B: 0 &,B- 0

Hy — g 0 %,B: 0 gzpB_
2 glpB+ 0 —&,B: 0

0 gzpB+ 0 & B,

(13)

where 1,5, 1., are real parameters and B, = B, % iB,. This contribution was discussed in [12]. The
Hamiltonian in equation (13) is responsible for the Zeeman effect. Orbital effects can be included by invoking
minimal coupling, k — k + %A, with vector potential A, in the strained Hamiltonian equations (10)—(a), and
the effects of strain on the Landau levels can be calculated along the lines of Liu et al [12]. We shall not pursue
these effects further in this work.
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E(eV)

Figure 2. Band structure close to I', with ¢, = 10% (solid) and without strain (dashed) in the absence of electric and magnetic fields.
Without strain the in-plane rotational symmetry is broken only by terms to third order in the wave vector, and only a small splitting
between different in-plane direction is seen. Including strain allows terms to first order in the wave vector that breaks the in-plane
rotational symmetry, and we see that a splitting of the in-plane directions occurs at lower k values. Here we have used the parameters
of [12] for the unstrained model, and X; = Y; = 10 eV A. We note that €, — €,y = 10% gives the same dispersion for the parameters
used here.

2.4.Electric field
Inversion symmetry can be broken by an electric field, giving rise to a Hamiltonian of the form:
Hy = W(GE_T??" — iE. T2 + W,E, I35
0 iWE 0  iWE
—iW,E, 0 —iWjE. 0
- ' , , (14)
0 IWEL 0 —iW,E,
—iW{E, 0  iW,E, 0

where W), , are real parametersand E; = E, + iE,.

3. Bulk spectrum and band-gap

In this section we will analyze the effects of strain and electric field on the bulk band structure close to the I
point. The Hamiltonian H = H,,, + Hgofequation (10) and (14) can be diagonalized analytically giving:
E=& + (M + |aiki + iZsk k22

+ |Biki — iZiRe(k}) + ZyIm(kD)* + WZE? + WiE}

+ Ql(avik; + iZsk,k2) W E-.

+ (Biki — iZyRe(k?) + Zy Im(k]) WL E:

+ AWLE[ |Biki — iZy Re(k}) + Z, Im(k}) 2

+ AW2E? |aik; + iZsk, k2|?

— 2Re((aik; + iZsk.k*) W E..

— (Biki — iZiRe(k)) + Zy (kD) W.E.))z (15)

In figure 2 an example of the band structure with and without strain is plotted. The terms in the Hamiltonian
linear in both strain and wave vector split the bands in the x and y directions closer to the I" point compared to
the case without strain, where the bands in the x and y directions are only split by the k’ terms. The electric field
breaks the inversion symmetry, and the degeneracies of the bulk conduction and valence bands are split. At the I"
point the degeneracies are protected by TR symmetry which is not broken. Another important quantity of the
electronic structure is the gap between the valence and conduction band at the I" point, given by:

Ar = 2,/(M + M + My + W2E2 + WER. (16)

Note that the gap can only be increased by applying an electric field, whereas strain can increase or decrease the
gap depending on the sign of the strain. The effects of strain have been investigated earlier by DFT calculations.
In [7] both Bi,Se; and Bi,Te; were investigated. Here the lattice constant in the xy-plane or the z-direction was
fixed relative to the known unstrained lattice constant, and the lattice constant in the other direction was relaxed
before the calculations were performed. An approximate linear relationship between the in-plane, and out-of-plane
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Band gap at I" point (eV)

0.8 % - M_
B12Te3
0.6 T 0.6 +
(0 e X 0.0
y BIQSE?, *it 2. orde1
021 =— Fit 3. order 1
: — Young et. al
) ) ) ) ) * Luo et. al ) )
-3 -2 -1 0 1 2 3 -6 -4 -2 0 2 4
In-plane strain (%) Uni-axial strain (%)

Figure 3. The band gap at I point as a function of strain according to the DFT calculations of [7, 8]. The curves from [8] are calculated
using the approximate linear relationships between the in-plane and out-of-plane lattice constant reported in [7]. The fits to the data
from [7] show good agreement, especially for Bi,Te;. Going to third order makes only a slight improvement compared to second order.

Table 3. Parameters used for the
calculations in this work. The
parameters X;and Y; fori = 1,2, 3,

4 are not calculated, but have been
chosen to qualitatively show the effect.

C(eV) —0.0083 [12]
D (eVA) 5.74[12]
D,(eVA) 30.4[12]
M(eV) —0.28[12]
By (eVA) —6.86[12]
B,(eVA) —44.5[12]
Ay (eVA) 2.26[12]
A5(eVA) 3.33[12]
Z,(eVR) 50.6[12]
Z,(eVR) —113.3[12]
g1 —25.4[12]
& —4.12]12]
I 4.10[12]
@ 4.80[12]
M,(eV) 2.635[8]
Myx(eV) 15.025 [8]
X,,Yi(eVA) 10

lattice constants was reported [7]. In [8] the band gap was calculated for many different strain configurations and
then fitted to a second order polynomial of the strain components. In figure 3 the results of these calculations are
shown together with second and third order fits to the results of [ 7]. The results show good agreement and both
predict a topological phase transition at approximately 6% uniaxial strain. Similar results were reported in [9].
According to our model the topological phase transition will occur when:

€Cpp — —— — —6”. (17)

In general, the parameters of this symmetry-adapted model can be determined by using DFT calculations. The
values of the parameters are highly dependent on the computational details as can be seen by comparing
[1, 12, 17]. In this paper, we use the values from [12] for the parameters not related to strain.

It should be emphasized that strain can only change the gap by a term proportional to the matrix I's in the
Hamiltonian, which is equivalent to simply changing the band gap parameter M. In the following sections we
focus on the on the response of the band gap under uniaxial strain, and include a second order contribution as
well since this can easily be done using the result of [8]:

M(fzz) =M+ Me, ‘i_1\412€2 (18)

22>

with the parameters given in table 3.

3.1. Effective masses
An important quantity for transport and optical properties of a solid is the effective mass tensor. Here we
calculate the diagonal components of the inverse effective mass tensor including both strain and electric field.
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Figure 4. The bulk conduction and valence band effective masses of Bi,Ses plotted as a function of the strain component €, and in the
absence of electric and magnetic fields. In the calculations, we have used the DFT computed strain parameters from [7] and [12] for the
parameters not related to strain. The solid (dashed) lines refer to the conduction (valence) band effective masses.

The inverse effective mass tensor is given by:

1 1 0%
2 = 4 . 19
[ *L— h? Ok;Ok; 1

m

With E = 0 we get the effective masses along the x and y axes:

2 i+ 16 — 2(M + Mie,, + My)B
[ﬁ_] —op, 4 |10l IOF = 2 & Mice: % Moa)Bs | (20)
1 2
fori = x, y and along the z-axis
2 2 2 — 2(M + Mye,, + Mye)B
[ﬁ_] — D, + los|* + |53l ( A-l- 1622 + Maey) By 1)
m zz _1—

2

The plus (minus) sign corresponds to the conduction (valence) band. For a non-zero electric field each of the two
bands is split into two subbands having the same effective mass, but differing by linear and cubic terms in the
wave vector. The effective masses including both strain and electric field are given in the appendix.

In figure 4 the bulk effective masses of Bi,Se; are plotted as a function of the strain component €, and in the
absence of electric and magnetic fields. Conduction (valence) band masses are shown as solid (dashed) lines and
the effective mass superscript ¢ (v) refers to the conduction (valence) band. In this case where only €,, = 0 and
the electric field is zero the effective masses along the x and y directions are the same. Note that since the
maximum of the valence band shifts away from the I point at a sufficiently large strain value, the valence band
effective masses change as a function of strain from positive to negative and reach infinite values in-between.

4. SS spectrum and spin structure

We shall now proceed to calculate the SS spectrum and spin structure for the model Hamiltonian (10). In this
and the following section we exclude k terms, i.e. the last three terms in equation (10) and the k dependent
terms in «v; and [3;. First, we consider a semi-infinite topological insulator filling the z < 0 half space,
implemented via the boundary conditions ¥(0) = 0and ¥(z) — 0 for z — —oo. The translational invariance
is broken in the z-direction and we make the substitution k, — —id,. Using the ansatz 1, e the stationary
Schrodinger equation implies the following secular equation:

0=D.D X + 2 — C(e) — Dak) Dy
— 2(M(€) — BoakD)By + | as? + | BoH N
+ iQ2Re(vaj + (153 ke + 2Re(z 05 + 3263 k) A
+ (E — C(€) — Dokjj)* — (M(€) — Bokjj)?
— | ke + ok, — | Biky + Baky (22)
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where D, = D; £ B,. This equation has 4 complex solutions );, each with two corresponding eigenspinors

(A given by:
E— &+ M
ky k, — 1683 \;
Gow = | +%j 03| (23)

Ollkx + Oézky — iOZ3)\,‘

Bk + B3k, — 163

by =| E-&-M 24)
arky + azk, — iaz
0

The general solution to the Schrodinger equation can then be written on the form:

2 4
U(z) =) > Cihi(Apes, (25)

j=1i=1

where the coefficients Cj;are to be determined from the boundary conditions. For SS we require that ¥(z) — 0
for z — —oo, implying that Re()\;) > 0. To satisfy the boundary condition at the surface we need two different
solutions with positive real part. By complex conjugation of equation (22) we see that for a solution \;, — ;" will
also be a solution. Hence, the solutions are either imaginary or occur in pairs related by A; = — )\}k. This allows
for three distinct cases: (i) All solutions are imaginary. (ii) Two complex solutions related by A\, = — A3 and two
imaginary solutions. (iii) Two pairs of complex solutions A, = — A3 and A, = — \}. Existence of SSs is only
possible in case (iii) and we therefore assume that A; and A, have positive real parts. Hence, we limit the sum in
equation (25)toi € {1,2}. Applying the boundary condition at z = 0 we obtain the following secular equation
for nontrivial solution to the coefficients Cj:

lovs|* + |33
N+ N)Ei= 2 B2 26
(M 2) DD (26)

and combining this with equation (22) we find the SS spectrum:

E=C(e) + &M(e)
B;

D2
+ - = (onke + @k + 18k + Bk
1

_mm@+%m£+W@+@m@ﬂ5

las* + 163

+ (D2 — &Bz)k”z. (27)
B,

For small k;; we see that the spectrum is linear but due to the strain, the group velocity has now become
anisotropic and the contours of constant energy have become elliptical. Note that the position of the Dirac-point
can be shifted by changing M(€), however the relative position within the bulk band gap is not changed. Notice
also that the second order term is not changed by strain, since we have systematically retained terms of order ¢'k'
and discarded terms of order ¢' k. Both the directional dependence of the group velocity and the ellipticity of the
contours of constant energy are shown in figure 5.

For k| = 0, thelinear term in equation (22) vanishes and A, and ), can be calculated analytically:

Ao = M , (28)
\/ 2D.D_

F = |65 + |as* — 2M(€)B; + 2ED; — 2C(€) Dy, (29a)

where:
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Figure 5. (a) Group velocity relative to the velocity in unstrained Bi,Se; given by vf = A, |1 — % as a function of the angle
1
0= arctan(ll:l) in the k,, k, plane. (b)—(f) Contour plots showing the elliptical curves of constant energy of the upper Dirac cone of the
surface states in the (ky, k,) plane. The black arrows indicate the direction in-plane part of the expectation value of the spin, while the
red arrows show the expectation value of the spin in the z-direction. Spin-momentum locking is still present, but spin and momentum
are no longer perpendicular. Here we have used the parameters of [12] for the parameters of the unstrained model, and
X;=Y;=10eVA.

R =F?—4D.D (E — C(e) + M(€))(E — C(e) — M(e)). (29b)

Imposing the boundary condition ¥(0) = 0 with equation (25) we find the exact wave functions of the two
degenerate eigenstates at kj; = 0, which are related by TR:

. | D |
isgn(Dy) |——
[2B4]
Bs |D_|

N[ fjesl? + 185 N 12B] |(eh= — ), (30a)

L4

a3 |D|
los] + 185> V2Bl
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ay ID|
los]?> + |85 V 2Bl
— . D Nz _ Nz
\112 N lsgn(D+) | +| (e ! e ) (30b)
|2Bi]
—053 |D-|
los? + |85 V 2Bl

Note that the a3 term couples the spin blocks and in contrast to the case without strain the eigenstates at the
kj, = 0 point are mixed up/down spinstates. The conditions for existence of SS at kyy = 0 are:

D.D. <0 and M(e)B;, > 0. (31)

As expected, the SS can only be destroyed by changing the sign of M(¢), i.e. closing and reopening the bulk
band gap.

Due to TR-symmetry the spin of the SS at (k,, k,) must be opposite of the spin of the SS at (—k,, —k,). Fora
(111) surface without strain, the model Hamiltonian is invariant under rotations in the xy-plane of any angle.
Hence (S,) = 0since (k,, k,) and (—k,, —k,) are related by a rotation around the z-axis which does not change S..
The terms linear in both wave vector and strain break the full rotation symmetry, and non-zero (S,) values are
allowed. At finite k, equation (22) was solved numerically, and using W(0) = 0 a numerical expression for the SS
spinor was determined. Finally, the expectation values of the spin operators were calculated and are shown in
figure 5. As expected, non-zero values of (S,) occur. Such out-of-plane spin components also show up in the
absence of strain to third order in k in the case of hexagonal warping [2] and has been experimentally verified in
[18]. The actual values of S, shown in figure 5(a) are of course strongly dependent on the chosen parameters, but
the non-zero S,-component is generally present for any values of X;and Y;.

4.1. Effective 2D model

Using the SS at k| = 0 as basis we can derive an effective 2D model for the SS. We use the wave functions in
equation (30), but with €;; = 0 to have a basis independent of strain. We note that in the absence of strain, ¢); and
1), represent spin up/down states respectively. The matrix elements of the I'-matrices in this basis read:

D2
(GIGIWY) = —sgn(BiA) 1 — B_lz loylii> (32a)
1

(W[ Y) = sgn(Bi1A) |1 — g—; AP (32b)
(WG| = (32¢)

(WTyY) = _Sgn(BlAl)\/j AR (32d)
(W) = E][ao] i (32¢)

The effective 2D model including k up to second order becomes:

— Ce) + 2ihi(e) + d®) - o + (Dz - &Bz)k”z, (33)
31 Bl

where d(k) = (d;(k), d>(k), d5(k)) is given by:

D2
dk)= [1— —12 Im(aoi ke + k)
Bj
D2
i 1 - _12 (Ve + 2Y46xy)kx
Bl
+ (A + A€y + Ay — Yie, — Yi(ew — fyy))ky): (34a)

11



I0OP Publishing NewJ. Phys. 20 (2018) 053041 MR Brems et al

DZ
dz(k) =— 11— B—lzRe(alkx + azk},)
1

D2
=7y 1 - B_lz ((YSEZJ/ + 2Y45xy)ky + (A + Ane + Ap €|+ Y3€zy + Yi(exx — Eyy))kx): (34b)
1

D}
ds(k) =— |1 — ?Im(ﬁlkx + Baky)
1
D2
=4 1 - B_12 ((X3fzy(fxx - 6yy))kx + (XK€ + 2X4fxy)ky)~ (340)
1

Diagonalizing the effective Hamiltonian gives the spectrum:

E=Cle) + 2tNt(e) + (Dz ~ D Bz)k”z
B B

1

Dz
+ 11— 3_12 Jlanke + aak, P + Im(Bike + Baky)?. (35)
1

This spectrum is different from equation (27), obtained from the 3D model. The two spectra become equal,
however, if we take i3 = 0. We note that the Berry curvature of the SS band vanishes identically,
Le. Qk) = d - [(Or,d) x (Or,d)] = 0.

5. Localization of SS and finite size effect

In the case of a finite slab, a gap will open in the SS spectrum at k;; = 0. This is due to the overlap of SS on
opposite surfaces. For a given thickness the overlap will be highly dependent on the penetration depth of the SS.
From the wave functions the expectation value of the distance from the surface d = — (z) can be calculated to:

B -D,D_
2M(€) las* +16; 1

\/T ’
las P+ 1651
and we see that d depends on strain through the band gap parameter, and the quantity \/|os|* + |35 involving
the coefficients of the terms first order in k..

The eigenenergies in the finite system can be calculated by imposing the boundary condition W(£L/2) = 0,
where L is the slab thickness. Now the wave function can be written as equation (25), but using all 4 solutions to

equation (22). At the I' point, the solutions are £\, , with A, , given by equation (28). The secular equation of
the nontrivial solution for the coefficients gives:

d:

(36)

(E — C(e) + M(€) + DAY, (tanh()\lL/Z) )*‘ 37
(E — C(e) + M(€) + D))

N tanh(\L/2)

for even/odd states respectively. This is the same form as found using the model without strain [19] , but here the
parameters M(e) and C(€) as wellas \; , from equation (28) depend on strain. The parameter C(¢) is not
important, since it simply shifts all energies. Again the important quantities are M(€)and /|as|* + |3s/*.

To find the gap of the SSs, A, equation (37) has been solved numerically for L = n - 9.547 A for integers n
between 2 and 6 where L = 9.547 A is the thickness of 1 QL. First we have analyzed the effect of the bulk band
gap changed by strain, and taking /|as]> + |35]> = A the value without strain. We see that increasing the bulk
band gap, decreases the SS band gap. Close to the phase transition this behavior is evident, since the SS must
approach bulk states extending further into the material as the bulk gap approaches zero, giving a large coupling
between opposite surfaces. As we saw in section 3, the bulk gap is most sensitive to e,,. Using equation (18) we
have plotted the SS gap as function of €., in figure 6(a). A similar result was reported in [9] for a slab of 8 QL using
DFT, where a gap opens when tensile strain is applied. Our results points to the physical origin of this effect being
the modification of the spatial distribution of the SS wave functions.

In figure 6(b), we have plotted the dependence of the SS gap on +/|as|* + |3s)* assuming a constant bulk
band gap parameter of M = 0.28 eV from [12] and setting M; = M, = 0. Without strain
Jls? + |32 = A = 2.26 eVA according to [12], but the quantitative dependence on strain has not been
determined. We see that the SS gap closes at low values, which is related to the fact that for

12
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Figure 6. Band gap for thicknesses of 2 to 6 quintuple layers (QL). In (a) the effect of changing the bulk band gap by uniaxial strain on
the SS gap A is shown. We have used a relation between the bulk band gap and ¢, from [8]. In this plot we have neglected the strain
dependence of \/|as]* + |B3]* bysettingA;; = 0.1In (b) we show the SS gap as a function of y/|as|*> + |3s]* , assuming a constant bulk
band gap, i.e., setting M; = M, = 0. The insets shows the expectation value of the distance to the surface for the SS in the semi-
infinite case, with the same horizontal axis. A qualitative agreement between the localization of the SS on single surface and the gap
induced by coupling between opposite surfaces is seen. We have used the parameters of the model without strain from [12].

Table 4. Experimental measurements of the surface
state gap, induced by coupling between opposite
surfaces. First row is from [24], second row is from
[25]. In the second row the gap increases from 2 to 3
QL, signifying an oscillatory dependence of the gap

on the thickness.

L 2QL 3QL 4QL 5QL
A(eV) 0.25 0.138 0.07 0.041
A(eV) 0.28 0.34

4M | D,D._ |
losf + |85 < ——

dependence of the SSl. Oscillatory SS give oscillations in the SS gap as a function of L, which has been
theorized to signify topological phase transitions between a trivial 2D insulator and a quantum spin hall
phase [20-22]. We note here that these oscillations are present only using the parameters of 1], not the
parameters of [ 12] as shown in [23]. Experimental evidence of oscillations in the gap remains inconclusive,
since both a simple decay of the gap for 2—5 QL has been reported [24] as well as an increase in the gap from 2
to 3 QL [25] signifying a topological phase transition between 2 and 3 QL. The observed gaps are summarized
in table 4.

the solutions to equation (22), A;, are complex giving an oscillatory spatial

13
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We have demonstrated that the gap of the SS can be tuned by strain. However, quantitative predictions
require access to the parameters relating the strain tensor to +/|az|* + |3s* . Tuning the band gap of the SSis
important for both applications and fundamental research. One particular experimental challenge is that the
layered structure of Bi,Se; makes it easy to fabricate integer numbers of QL. Thus the gap dependence on the
layer thickness has only been experimentally studied with few data points, since the gap becomes too small to be
measured already at 6 QL [24]. With strain, it is be possible to increase the SS gap and investigate the thickness
dependence of the gap further. Another intriguing prospect would be tuning the gap via strain, so as to pass
through the topological transition in a controlled manner.

6. Conclusion

We have derived the most general Hamiltonian for the Bi,Ses-class of materials including terms to third
order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both
strain and wave vector. We show that this model provides a description of a range of different effects of strain
on the electronic structure of these materials. Specifically we have analytically derived the spectrum of the SS
for a semi-infinite topological insulator, showing qualitatively the effects of strain on both the spectrum and
the spin structure. The terms first order in both wave vector and strain break the full rotational symmetry
close to kj = 0, leading to an anisotropy in the Dirac cone otherwise absent for the simple (111) surface
termination. The spin structure is altered as well, and for some strain configurations a spin component
perpendicular to the surface arises. In an analysis of the finite size effect we show that increasing the bulk
band gap by virtue of strain, decreases the induced gap in the SS. Strain-tuning the SS gap gives new
possibilities for experimental investigation of the thickness dependence of the SS gap and control of
transport and optical properties.
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Appendix. Effective masses

Here we give the expressions for the bulk effective masses including both contributions from strain and electric
fields. Upper (lower) signs refer to the conduction (valence) band.

h? 2
- = 2D2 =+ A_(_2(M + Mfzz + M2€||)BZ + (AZ + AZlfzz + A22€|| + Y3€zy + Y4(Exx - fyy))z
N

My
+ (e + 2Y46xy)2 + Xiex +2X 5xy)2 + (7X352y + Xy(€xx — 5yy))2

4
- E(‘LEZZ WZZ((AZ + AZlfzz + A226|| + Y36zy + Y4(6xx - fyy))z + (Y3 €z T 2Y45xy)2)
T

+ AWTE}(Xi€x + 2X064)” + (= X362 + Xa(exx — €))7

+ WEx(Ay + Asi€z + Ap €+ Yaey + Yilew — €))) — WE,(Yzez + 2Y46y)

+ WE,(Xi € + 2X5€4))?

+ W Ex(Vs € + 2Yy6y) + WIE, (Ay + Asi€z + Ane + Vs, + Yal(ex — €)))

+ W,E,(—X36; + Xu(€xx — €,)))*

— 2(WEx(A2 + Asi€z + An g + Va6 + Yile — €5)) — WIE, (Va6 + 2Ya6y)

— WE, (X €2 + 2X364y))?

+ 2WEx (Y36, + 2Ya€ny) + WHE (A + Ani€z: + An g + Ys65 + Yalenx — €5y))

— WE.(—Xs36z + Xy(€x — €,))7), (AD)
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B oD, & 2 (2M + Mycs + My By + (e + 2scy)?
my Ar
+ (A + Asiez + Ape — Y36z — Yi(ew — 6))* + (i€ + Xl — €))7 + Xz — 2X46y)?
- Ai%mEfWZ((YSEZX T+ 2Wyey)? + (A + Asies + A — Voey — Yalem — )
+AWTE] (X6 + Xo(ex — )" + (Xzea — 2Xa6y)?)
+ (W Ex (Vs + 2Ya64) — WE, (As + Ani€z + Ane — Y36, — Yalex — €)))
+ WE,(Xiezy + Xa(exx — €))))?
+ WMIEx(Az + Asi€z: + An — a6z — Yalex — €5y)) + WIE, (V362 + 2Yseyy)
+ W,E,(Xz6, — 2X4€4))?
= 2IWEx (Y€ + 2Ya6x) — WE, (Ay + A€z + A — Vi€ — Ya(ew — €5)
— W,E,(Xi €z + Xo(€xe — €)))?
+ 2(WEx(Ay + Aji€z; + Apg — Yaey — Yalew — €)) + WE, (Yz ez + 2Y4ey)
— W,E, (X356, — 2X465))%),
(A2)
h? _ 2 5 5
m—z = 2D £ A_p(_Z(M + Mie, + Mag)) By + (Yiew + 2Ya6)” + (Yiey + Yalew — €)
+ (A + Anez + Ang))?
- Ai%(%"f W2 (Ve + 2Y269)” + (Yiezy + Yalexx — €)) + 4AWJEF (Al + Ajiez + Ang)
+ WEx(Viea + 2Ys65) — WIE,(Yiesy + Valen — €)) + WoE (A + Anez + Ane)
+ WMEx(Yiezy + Yalew — €5)) + WIE,(Yien + 2Ya6y))?
— 2(WEc(Yiex + 2Yaey) — WE, (Y€ + Ya(ew — €))) — WE (Al + Aliez. + Al q)))?
+ 2WEx(Yiezy + Yalexx — €5)) + WE,(Yien + 2Ya6))2).
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