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Abstract
Based on group theoretical arguments we derive themost general Hamiltonian for the Bi2Se3-class of
materials including terms to third order in thewave vector, first order in electric andmagnetic fields,
first order in strain andfirst order in both strain andwave vector.We determine analytically the effects
of strain on the electronic structure of Bi2Se3. For themost experimentally relevant surface
terminationwe analytically derive the surface state (SS) spectrum, revealing an anisotropicDirac cone
with elliptical constant energy contours giving rise to a direction-dependent group velocity. The spin-
momentum locking of strained Bi2Se3 is shown to bemodified.Hence, strain control can be used to
manipulate the spin degree of freedom via the spin–orbit coupling.We show that for a thinfilm of
Bi2Se3 the SS band gap induced by coupling between the opposite surfaces changes opposite to the
bulk band gap under strain. Tuning the SS band gap by strain, gives newpossibilities for the
experimental investigation of the thickness dependent gap and optimization of optical properties
relevant for, e.g., photodetector and energy harvesting applications.Wefinally derive analytical
expressions for the effectivemass tensor of the Bi2Se3 class ofmaterials as a function of strain and
electricfield.

1. Introduction

Topological insulators have an inverted band gapwhich engenders topologically protected surface states (SS).
Exhibiting linear dispersion, the electrons at the surface resemblemassless helical Dirac fermions, with spin
locked to themomentum. The prime examples of three-dimensional topological insulators are among
Bi2Se3-class ofmaterials [1]. This class, also known as the tetradymite group, contains compoundsM2X3where
M is either Bi or Sb andX is a combination of Se, S andTe. The crystal structure consists of unit layers offive
atomic layers, so-called quintuple layers (QL). For the simplest case of a (111) surface termination, where the
surface is parallel to the quintuple layer, theDirac cone is fully isotropic for small in-planemomentum,
perturbed only by a hexagonal warping to third order inmomentum [2]. For other surface terminations the
Dirac cone of the SS becomes anisotropic with elliptical curves of constant energy, as reported for the (221)
surface in [3]. AnisotropicDirac fermions have interesting transport properties due to the different group
velocity in different directions [4], and have attracted attention in otherDiracmaterials [5, 6].

For both fundamental research and applications it is interesting to be able to tune the physical properties of
thesematerials. Oneway to do this is by the application of strain. It was reported in [7–9] that strain strongly
affects the band gap at theΓ point of bulk Bi2Se3, and could even close the gap at large strain values, i.e. induce a
topological phase transition.Whether this is possible to achieve in realmaterials is not known, but a recent study
points to the feasibility of strain induced effects in Bi2Se3where strain up to 3%was induced by lattice
mismatch [10].
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In this paper, we use themethod of invariants [11] to derive themost general Hamiltonian at theΓ point to
third order inwave vector, first order in strain, first order in electric andmagnetic fields as well as terms tofirst
order in bothwave vector and strain. The allowed third order terms in thewave vector include three terms that
were neglected in a previous analysis [12]. Since thismodel is based solely on the symmetry of the crystal, it is
valid for allmaterials in the Bi2Se3 class.

Using thismodel, we determine analytical expressions for themodified bulk band structure and the effective
mass tensor near theΓ-point. Changes in the effectivemass tensor with strain and electric field are important for
transport and optical properties [13]. Comparing the strain dependence of the band gap to recent density
functional theory (DFT) calculations, allows us to determine some of the strain related parameters in the band
structure. From this bulk spectrum,we go on to investigate the effects of strain on the SS of a semi-infinite
topological insulator.We analytically derive the spectrumof the SS, applying hard-wall boundary conditions at
the surface for a semi-infinite topological insulator with a (111) surface termination. In contrast to the
unstrained case, the full in-plane rotational symmetry to linear order inwave vector is broken by terms linear in
both strain andwave vector, leading to an anisotropic Dirac spectrum. The spin expectation values of the SS are
calculated, and it is shown that the spin-momentum locking is affected by strain, revealing a non-zero spin
component perpendicular to the surface. ThemodifiedDirac cone and spin structure of the SS is shown in
figure 1. Finally, we show that strain affects the localization of the SSwave functions and thereby the band gap
arising in thinfilms due to the coupling between SS on opposite surfaces.We show that the SS band gap changes
oppositely to the bulk band gap under strain: increasing the bulk band gap, localizes the SS and decreases the SS
band gap, and vice versa. This shows that not only the bulk, but also the SS band gap can be tuned via strain.

2.ModelHamiltonian

In linewith [12], wewish to derive a 4-bandmodelHamiltonian describing the Bi2Se3 class, which now includes
all allowed terms to orders cubic in thewave vector k, linear in the strain tensor òij, linear inmagnetic fieldB or
electric fieldE, and linear in both k and òij.

In general any 4×4Hamiltonian can bewritten in terms ofDiracΓmatrices defined in terms of the Pauli
matrices by:

s t s t s t s t s tG = Ä G = Ä G = Ä G = Ä G = Ä ( ), , , , , 11 1 1 2 2 1 3 3 1 4 0 2 5 0 3

and their commutators G = G G[ ],ij i i j
1

2
. A general 4×4matrix can then bewritten:

å åe= + G + G
=

( )H d dI , 2m
i

i i
i j

ij ij
1

5

,

where the coefficients ε, di, dijmust be real to ensure hermiticity. In the present case the coefficients are functions
of k, òij,B andE.

Here we use the basis ñ-
+∣P1 , 1

2
,- ñ+

-∣Pi 2 , 1

2
, - ñ-

+∣P1 , 1

2
, - ñ+

-∣Pi 2 , 1

2
, derived from the p orbitals of the Bi and

Se atoms. The upper sign denotes the inversion eigenvalue and the 1

2
the total angularmomentum. For amore

Figure 1. For unstrained Bi2Se3 the linear dispersion of the helical surface states is isotropic in the plane to linear order in thewave
vector. In the case of strain, the in-plane rotational symmetry is broken by terms to first order in both strain andwave vector leading to
aDirac conewith elliptical contours of constant energy, here shown for òxy=5%.Hence, the group velocity of the surface electrons
becomes dependent on the direction. The broken rotational symmetry also allows for a spin component perpendicular to the surface,
as shown by the red arrows.

2

New J. Phys. 20 (2018) 053041 MRBrems et al



complete discussion see [12]. In this basis theσmatrices do not represent spin, but are related to spin by:

s t s t s t
=

Ä
=

Ä
=

Ä ( )s s s
2 2 2

, 3x y z
1 3 2 3 3 0

as noted in [14].
In this basis, the transformation operators corresponding to the symmetries of the crystal are inversion

I=σ0⊗τ3, three-fold rotation around the z-axis t= ÄpsR e3
i 3

0
3 , two fold rotation around the x-axisR2=i

σ1⊗τ3 and time-reversalT=i(σ2⊗τ0)K, whereK is the complex conjugation operator. Now theΓ-matrices
can be characterized by their irreducible representation under the groupD3 as well as their eigenvalues under I
andT.

2.1. Group theory
Next, we construct polynomials inwave vector, strain, electric andmagneticfields transforming according to the
irreducible representations of the groupD3d. This group is a direct product group ofD3 with the group of the
inversion operator.Here wewill considerD3 separately and simply add inversion eigenvalues aswell as time-
reversal eigenvalues. The groupD3 has three irreducible representations:Γ

(1), which is the trivial representation,
Γ(2), which is one-dimensional as well and the two-dimensional representationΓ(3).

Thewave vector component kz transforms according to the one-dimensional representationΓ(2), i.e. it only
changes bymultiplication of a constant under the transformations ofD3. The in-plane components, kx and ky,
transform according to the two-dimensional irreducible representationΓ(3). Herewewill use the basis {k+, k−},
where k±=kx±iky. As an examplewewill showhow to construct the second order terms transforming
according to irreducible representations including only in-planemomentum. First we note that

G Ä G = G Å G Å G ( )( ) ( ) ( ) ( ) ( ), 43 3 1 2 3

i.e. the second order terms of in-planemomenta transform according to a representation equivalent to the sum
of these three irreducible representations. The basis functions for the irreducible representations can be formed
using table 1(c), with {u1, u2}={v1, v2}={k+, k−}, andwe get:

yG = + µ+ - - + ( )( ) ( )
∣∣k k k k k:

1

2

1

2
, 51 1 2

yG = +
-

=+ - - + ( )( ) ( ) k k k k:
i

2

i

2
0, 62 2

y yG = - +{ } { } ( )( ) ( ) ( ) k k: , , , 73
1
3

2
3 2 2

Table 1.Multiplication table for the irreducible representations of the
groupD3d, (a), and the coupling constants for the basis functions of the
relevant productsΓ(2)⊗Γ(3), (b) andΓ(3)⊗Γ(3), (c). Note that the
multiplication table is completely general since it is in principle
concerning equivalence classes of representations, while the coupling
constants are only valid for a specific representation, here the
representationwith basis functions {k+, k−}. Adopted from [16].

(a)

⊗ Γ(1) Γ(2) Γ(3)

Γ(1) Γ(1) Γ(2) Γ(3)

Γ(2) Γ(2) Γ(1) Γ(3)

Γ(3) Γ(3) Γ(3) Γ(1)⊕Γ(2)⊕Γ(3)

(b)

u(2)v(3)1
( ) ( )u v2

2
3

y( )
1
3 i 0

y( )
2
3 0 −i

(c)

( ) ( )u v1
3

1
3 ( ) ( )u v1

3
2

3 ( ) ( )u v2
3

1
3 ( ) ( )u v2

3
2

3

ψ(1) 0 1

2

1

2
0

ψ(2) 0 i

2

-i

2
0

y( )
1
3 0 0 0 1

y( )
2
3 1 0 0 0
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wherewe have defined = +∣∣k k kx y
2 2 2. Since {u1, u2}={v1, v2} theΓ

(2) term is simply 0, andwe have 3

independent second order terms in the in-planemomenta: ∣∣k 2, which is invariant, and the pair - +{ }k k,2 2

transforming according to the two-dimensional irreducible representationΓ(3). The inversion and time-reversal
eigenvalues follow the simple rule±⊗±=+ and±⊗m=−. Proceeding like this we can go to any desired
order, and include externalfields as well.We note that the strain tensor òij transforms as kikj [15]. This result
follows from the definition of strain

 =
¶
¶

+
¶

¶

⎛
⎝⎜

⎞
⎠⎟ ( )u

x

u

x

1

2
, 8ij

i

j

j

i

whereu is the displacement vector. The resulting irreducible basis functions are summarized in table 2.

2.2.ModelHamiltonian
For theHamiltonian to be invariant under the groupD3 it can only contain terms from the invariant
representation,Γ(1). As seen in themultiplication table 1(a),Γ(1) terms can only be formed by combining terms
from the same irreducible representation. For invariance under inversion (I) and time-reversal (TR), wemust
combine terms andmatrices with the same eigenvalues, i.e. from the same cell in table 2. For theΓ(3)

representationwe can use table 1(c) to construct an invariant term,Γ(1) andΓ(2) are 1 dimensional sowe simply
take the product.

For example, the terms -- +{ }k k k ki , iz z
2 2 belong to the irreducible representationΓ(3) and are odd under

both TR and I. The pair ofmatrices G G+ -{ },1,2 1,2 , defined as G = G  G ii j
i j

, , transform exactly the sameway, and
using table 1(c)we can therefore combine them as follows:

yG = G - G

µ G - G

- - + +

- - + +( ) ( )

( ) ( ) k k k k

k k k

:
1

2
i

1

2
i

i i . 9

z z

z

1 1 2 1,2 2 1,2

2 1,2 2 1,2

Table 2.Polynomials of k, strain andmagnetic fields and theΓmatrices
under the transformations of the groupD3, inversion and time reversal.
To simplify the notationwe have introduced   = +∣∣ xx yy ,
ò±=òxx−òyy±2iòxy, òz±=òzx±iòzy. In the 2-dimensional
representations we have changed basis to G = G  G ii j

i j
, . These have

been constructed such that they are real, and each pair is hermitian
conjugates of each other and the pairs transform like {k+, k−} under the
groupD3.

T I Γ(1) Γ(2) Γ(3)

dim=1 dim=1 dim=2

− −




G

+

+ -

+ +

( )
( )
( )

k

k

k

Re

Im

Re
z

3

4






G

+

+ -

+ +

( )

( )
( )

∣∣

∣∣

k

k

k k

k

k
k

k

k

Im

Re

Im

z

z

z

zz z

z

z

3

2

3

3



 
 
 
 

-

-
-

G G

+ -

+ -

+ -

- +

+ -

+ -

+ -

- +

- + +

- + + -

+ -

-

{ }
{ }
{ }

{ }
{ }
{ }

{ }
{ }

{ }
{ }
{ }

∣∣

∣∣

k k

k k k

k k k

k k k k

k k

k k

k

k

k k

k k

,

,

,

i , i

,

,

,

i , i

i , i

,

,

z

z z

zz

z z z

z

z z

2

2

2 2

1,2 1,2

+ +



G

∣∣

∣∣

k

k
z

zz

2

2

5

 
 

-

-

+ -

- +

+ -

- +

{ }
{ }

{ }
{ }

k k k k

k k

i , i

,

i , i

,

z z

z z

2 2

+ − G45

G
Ez

35 G - G
+ -

+ -

{ }
{ }

E E

i i

,

,25,51 25,51

− +
G
G

Bz

12

34

G G

G G

+ -

+ -

+ -

{ }
{ }
{ }

B B,

,

,

13,23 23,31

14,24 14,24
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This forms an invariant, and thus it is an allowed term in theHamiltonian. Anymultiple of this term is of course
also an invariant, andwe get a free parameter in front, whichwe denoteZ3. Proceeding this waywe achieve the
followingHamiltonian, for now excluding electric andmagnetic fields:

* *

*

*









b a
b a

a b
a b

= +
-

-
- -

- G + G

+ G - G
+ +

- - + +

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( ) ( )
( ) ( )

H

k k

k k

k k

k k

Z k Z k

Z k k k

0

0

0

0

Re Im

i i , 10

m

i i i i

i i i i

i i i i

i i i i

z

0

1
3

4 2
3

3

3
2 1,2 2 1,2

where repeated indices are summed over andwhere:

  = + + + + ( )∣∣ ∣∣C C C D k D k a, 11zz z0 1 2 1
2

2
2

  = + + - - ( )∣∣ ∣∣M M M B k B k b, 11zz z1 2 1
2

2
2

   a = + + + + + +- + ( )∣∣ ∣∣A A A A k A k Y Y ci , 11zz z z1 2 21 22 23
2

24
2

3 4

   a = + + + + + -- + ( )∣∣ ∣∣A A A A k A k Y Y di i i i i i , 11zz z z2 2 21 22 23
2

24
2

3 4

 a = ++ - ( )Y Y ei , 11z3 1 2

    b = + - + -( ) ( )X X X X f2 i i , 11zx xy zy xx yy1 1 2 3 4

    b = + - + -( ) ( )X X X X gi 2i , 11zy xx yy zx xy2 1 2 3 4

 b = + + + + ( )∣∣ ∣∣A A A A k A k h, 11zz z3 1 11 12 13
2

14
2

with   = +∣∣ xx yy, ò±=òxx−òyy±2iòxy, òz±=òzx±iòzy. From themethod of invariants it follows that all
model parameters designated by capital roman lettersmust be real parameters, which are not determined by the
symmetries of the crystal. TheHamiltonian above contains all allowed terms to third order in k, first order in
strain and termsfirst order in both.Neglecting strain, thisHamiltonian reduces to the one derived in [12], except
for three terms combining the in-plane and out-of-plane components of thewave vector, G + G+ - - +( )k k kz

2 1,2 1,2 ,
G∣∣k kz

2
3 and G - G- - + +( )k k ki iz

2 1,2 2 1,2 , whichwere not included in [12]. The k independent strain terms depend only
on ∣∣ and òzz, and are either proportional to the identitymatrix orΓ5. Hence, the effects of these terms can be
describedwithin the unstrainedmodel bymaking the parameters strain-dependent  ˜ ( )M M and

 ˜( )C C , where:

  = + +˜ ( ) ( )∣∣M M M M a, 12zz1 2

  = + +˜( ) ( )∣∣C C C C b. 12zz1 2

Similarly the terms linear in k and ∣∣or òzz, can be described by strain-dependentmodel parameters in the
unstrainedmodel. The shear strain terms and the termswith òxx−òyy give new terms linear in k, which cannot
be described bymaking the parameters of the unstrainedmodel strain-dependent. The effects of òzx are similar
to the effects of òxy, since they contribute to the real parts ofβ1,α2 andα3 and the imaginary parts ofα1 andβ2.
For the same reason òxx−òyy and òzyhave similar effects. Aswe demonstrate below, the new terms linear in the
wave vector give rise to newphysics at the (111) surface of a semi-infinite topological insulator.

Higher order terms in strainwill always be both inversion and time-reversal symmetric, and in table 2we see
that the onlymatrices symmetric under both I andTR are the identitymatrix andΓ5, and k-independent strain
termsmay therefore be lumped into the strain-dependent parameters ˜ ( )M and ˜( )C .

2.3.Magneticfield
TheHamiltonian in equation (10) is invariant under both TR and inversion, thus all bands are doubly
degenerate. The TR symmetry can be broken by amagnetic field, whichmust be included in the following form:

m
=

-

-

-

-

+

+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )H

g B g B

g B g B

g B g B

g B g B

2

0 0

0 0

0 0

0 0

, 13B
B

z z p

z z p

p z z

p z z

1 1

2 2

1 1

2 2

where g1z,2z,1z,2z are real parameters andB±=Bx±iBy. This contributionwas discussed in [12]. The
Hamiltonian in equation (13) is responsible for the Zeeman effect. Orbital effects can be included by invoking
minimal coupling,


 +k k Ae , with vector potentialA, in the strainedHamiltonian equations (10)–(a), and

the effects of strain on the Landau levels can be calculated along the lines of Liu et al [12].We shall not pursue
these effects further in this work.

5

New J. Phys. 20 (2018) 053041 MRBrems et al



2.4. Electricfield
Inversion symmetry can be broken by an electric field, giving rise to aHamiltonian of the form:

= G - G + G

=
- -

-
-

- + + -

-

-

+

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( )

( )

∣∣

∣∣

∣∣

∣∣

∣∣

H W E E W E

W E W E

W E W E

W E W E

W E W E

i i

0 i 0 i

i 0 i 0

0 i 0 i

i 0 i 0

, 14

E z z

z z

z z

z z

z z

25,51 25,51
35

where ∣∣W z, are real parameters and E±=Ex±iEy.

3. Bulk spectrumandband-gap

In this sectionwewill analyze the effects of strain and electric field on the bulk band structure close to theΓ
point. TheHamiltonianH=Hm+HE of equation (10) and (14) can be diagonalized analytically giving:

  a
b

a

b

b

a

a

b

=  + +

+ - + + +

 +

+ - +

+ - +

+ +

- +

- - +

-

+ +

- +

+ +

+ +

-

- +

+ +

( ∣ ∣
∣ ( ) ( )∣

( ∣( )
( ( ) ( )) ∣

∣ ( ) ( )∣

∣ ∣
(( )

( ( ) ( )) )) ) ( )

∣∣ ∣∣

∣∣

∣∣ ∣∣

∣∣

E k Z k k

k Z k Z k W E W E

k Z k k W E

k Z k Z k W E

W E k Z k Z k

W E k Z k k
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Infigure 2 an example of the band structure with andwithout strain is plotted. The terms in theHamiltonian
linear in both strain andwave vector split the bands in the x and y directions closer to theΓ point compared to
the casewithout strain, where the bands in the x and y directions are only split by the k3 terms. The electric field
breaks the inversion symmetry, and the degeneracies of the bulk conduction and valence bands are split. At theΓ
point the degeneracies are protected by TR symmetry which is not broken. Another important quantity of the
electronic structure is the gap between the valence and conduction band at theΓ point, given by:

 D = + + + +G ( ) ( )∣∣ ∣∣ ∣∣M M M W E W E2 . 16zz z z1 2
2 2 2 2 2

Note that the gap can only be increased by applying an electric field, whereas strain can increase or decrease the
gap depending on the sign of the strain. The effects of strain have been investigated earlier byDFT calculations.
In [7] both Bi2Se3 and Bi2Te3 were investigated. Here the lattice constant in the xy-plane or the z-directionwas
fixed relative to the knownunstrained lattice constant, and the lattice constant in the other directionwas relaxed
before the calculationswere performed.Anapproximate linear relationshipbetween the in-plane, andout-of-plane

Figure 2.Band structure close toΓ, with òzy=10% (solid) andwithout strain (dashed) in the absence of electric andmagnetic fields.
Without strain the in-plane rotational symmetry is broken only by terms to third order in thewave vector, and only a small splitting
between different in-plane direction is seen. Including strain allows terms tofirst order in thewave vector that breaks the in-plane
rotational symmetry, andwe see that a splitting of the in-plane directions occurs at lower k values.Herewe have used the parameters
of [12] for the unstrainedmodel, andXi=Yi=10 eV Å.We note that òxx−òyy=10%gives the same dispersion for the parameters
used here.
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lattice constantswas reported [7]. In [8] the band gapwas calculated formanydifferent strain configurations and
thenfitted to a secondorder polynomial of the strain components. Infigure 3 the results of these calculations are
shown togetherwith second and third orderfits to the results of [7]. The results showgood agreement andboth
predict a topological phase transition at approximately 6%uniaxial strain. Similar resultswere reported in [9].
According to ourmodel the topological phase transitionwill occurwhen:

 = - - ( )∣∣
M

M

M

M
. 17zz

1

2

1

In general, the parameters of this symmetry-adaptedmodel can be determined by usingDFT calculations. The
values of the parameters are highly dependent on the computational details as can be seen by comparing
[1, 12, 17]. In this paper, we use the values from [12] for the parameters not related to strain.

It should be emphasized that strain can only change the gap by a termproportional to thematrixΓ5 in the
Hamiltonian, which is equivalent to simply changing the band gap parameterM. In the following sections we
focus on the on the response of the band gap under uniaxial strain, and include a second order contribution as
well since this can easily be done using the result of [8]:

  = + +˜ ( ) ( )M M M M , 18zz zz zz1 12
2

with the parameters given in table 3.

3.1. Effectivemasses
An important quantity for transport and optical properties of a solid is the effectivemass tensor. Herewe
calculate the diagonal components of the inverse effectivemass tensor including both strain and electric field.

Figure 3.The bandgap atΓpoint as a functionof strain according to theDFTcalculations of [7, 8]. The curves from [8] are calculated
using the approximate linear relationships between the in-plane andout-of-plane lattice constant reported in [7]. Thefits to the data
from [7] showgoodagreement, especially for Bi2Te3.Going to thirdordermakes only a slight improvement compared to second order.

Table 3.Parameters used for the
calculations in this work. The
parametersXi andYi for i=1, 2, 3,
4 are not calculated, but have been
chosen to qualitatively show the effect.

C(eV) −0.0083 [12]
( Å)D eV1

2 5.74 [12]
( Å)D eV2

2 30.4 [12]
M(eV) −0.28 [12]

( Å)B eV1
2 −6.86 [12]

( Å)B eV2
2 −44.5 [12]

A1(eVÅ) 2.26 [12]
A2(eVÅ) 3.33 [12]

( Å)Z eV1
3 50.6 [12]

( Å)Z eV2
3 −113.3 [12]

g1z −25.4 [12]
g1p −4.12 [12]
g2z 4.10 [12]
g2p 4.80 [12]
M1(eV) 2.635 [8]
M12(eV) 15.025 [8]
Xi,Yi(eVÅ) 10
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The inverse effectivemass tensor is given by:
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WithE=0we get the effectivemasses along the x and y axes:
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for i=x, y and along the z-axis
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The plus (minus) sign corresponds to the conduction (valence) band. For a non-zero electric field each of the two
bands is split into two subbands having the same effectivemass, but differing by linear and cubic terms in the
wave vector. The effectivemasses including both strain and electric field are given in the appendix.

Infigure 4 the bulk effectivemasses of Bi2Se3 are plotted as a function of the strain component òzz and in the
absence of electric andmagnetic fields. Conduction (valence) bandmasses are shown as solid (dashed) lines and
the effectivemass superscript c (v) refers to the conduction (valence) band. In this case where only  ¹ 0zz and
the electricfield is zero the effectivemasses along the x and y directions are the same.Note that since the
maximumof the valence band shifts away from theΓ point at a sufficiently large strain value, the valence band
effectivemasses change as a function of strain frompositive to negative and reach infinite values in-between.

4. SS spectrumand spin structure

We shall nowproceed to calculate the SS spectrum and spin structure for themodelHamiltonian (10). In this
and the following sectionwe exclude k3 terms, i.e. the last three terms in equation (10) and the kdependent
terms inαi andβi. First, we consider a semi-infinite topological insulatorfilling the z<0 half space,
implemented via the boundary conditionsΨ(0)=0 and Y ( )z 0 for  -¥z . The translational invariance
is broken in the z-direction andwemake the substitution  - ¶k iz z . Using the ansatz yl

lez the stationary
Schrödinger equation implies the following secular equation:
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Figure 4.The bulk conduction and valence band effectivemasses of Bi2Se3 plotted as a function of the strain component òzz and in the
absence of electric andmagneticfields. In the calculations, we have used theDFT computed strain parameters from [7] and [12] for the
parameters not related to strain. The solid (dashed) lines refer to the conduction (valence) band effectivemasses.
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whereD±=D1±B1. This equation has 4 complex solutionsλi, eachwith two corresponding eigenspinors
ψj(λi) given by:
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The general solution to the Schrödinger equation can then bewritten on the form:

åå y lY = l

= =

( ) ( ) ( )z C e , 25
j i

ij j i
z

1

2

1

4
i

where the coefficientsCij are to be determined from the boundary conditions. For SSwe require that Y ( )z 0
for  -¥z , implying that l >( )Re 0i . To satisfy the boundary condition at the surface we need twodifferent
solutionswith positive real part. By complex conjugation of equation (22)we see that for a solutionλi,−λi

*will
also be a solution.Hence, the solutions are either imaginary or occur in pairs related by *l l= -i j . This allows

for three distinct cases: (i)All solutions are imaginary. (ii)Two complex solutions related by *l l= -1 2 and two
imaginary solutions. (iii)Twopairs of complex solutions *l l= -1 3 and *l l= -2 4 . Existence of SSs is only
possible in case (iii) andwe therefore assume thatλ1 andλ2 have positive real parts. Hence, we limit the sum in
equation (25) to iä{1, 2}. Applying the boundary condition at z=0we obtain the following secular equation
for nontrivial solution to the coefficientsCij:

l l
a b

+ =
+

- + -
( ) ∣ ∣ ∣ ∣ ( )

D D
, 261 2

2 3
2

3
2

and combining this with equation (22)wefind the SS spectrum:

* *
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For small ∣∣k we see that the spectrum is linear but due to the strain, the group velocity has nowbecome
anisotropic and the contours of constant energy have become elliptical. Note that the position of theDirac-point
can be shifted by changing ˜ ( )M , however the relative positionwithin the bulk band gap is not changed.Notice
also that the second order term is not changed by strain, sincewe have systematically retained terms of order ò1k1

and discarded terms of order ò1k2. Both the directional dependence of the group velocity and the ellipticity of the
contours of constant energy are shown infigure 5.

For =∣∣k 0, the linear term in equation (22) vanishes andλ1 andλ2 can be calculated analytically:

l =
- + -

a

a

+ -

( ) ( )F R

D D

1

2
, 28

where:

 b a= + - + -∣ ∣ ∣ ∣ ˜ ( ) ˜( ) ( )F M B ED C D a2 2 2 , 293
2

3
2

1 1 1
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   = - - + - -+ -( ˜( ) ˜ ( ))( ˜( ) ˜ ( )) ( )R F D D E C M E C M b4 . 292

Imposing the boundary conditionΨ(0)=0with equation (25)wefind the exact wave functions of the two
degenerate eigenstates at =∣∣k 0, which are related by TR:
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Figure 5. (a)Group velocity relative to the velocity in unstrained Bi2Se3 given by = -v A 1F
D

B
0

2
1
2

1
2 as a function of the angle

q = ( )arctan
k

k

y

x
in the kx, ky plane. (b)–(f)Contour plots showing the elliptical curves of constant energy of the upperDirac cone of the

surface states in the (kx, ky) plane. The black arrows indicate the direction in-plane part of the expectation value of the spin, while the
red arrows show the expectation value of the spin in the z-direction. Spin-momentum locking is still present, but spin andmomentum
are no longer perpendicular. Herewe have used the parameters of [12] for the parameters of the unstrainedmodel, and
Xi=Yi=10 eV Å.
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Note that theα3 term couples the spin blocks and in contrast to the casewithout strain the eigenstates at the
=∣∣k 0 point aremixed up/down spinstates. The conditions for existence of SS at =∣∣k 0 are:

< >+ - ˜ ( ) ( )D D M B0 and 0. 311

As expected, the SS can only be destroyed by changing the sign of ˜ ( )M , i.e. closing and reopening the bulk
band gap.

Due to TR-symmetry the spin of the SS at (kx, ky)must be opposite of the spin of the SS at (−kx,−ky). For a
(111) surfacewithout strain, themodelHamiltonian is invariant under rotations in the xy-plane of any angle.
Hence á ñ =S 0z since (kx, ky) and (−kx,−ky) are related by a rotation around the z-axis which does not change Sz.
The terms linear in bothwave vector and strain break the full rotation symmetry, and non-zero á ñSz values are
allowed. Atfinite ∣∣k , equation (22)was solved numerically, and usingΨ(0)=0 a numerical expression for the SS
spinorwas determined. Finally, the expectation values of the spin operators were calculated and are shown in
figure 5. As expected, non-zero values of á ñSz occur. Such out-of-plane spin components also showup in the
absence of strain to third order in k in the case of hexagonal warping [2] and has been experimentally verified in
[18]. The actual values of Sz shown infigure 5(a) are of course strongly dependent on the chosen parameters, but
the non-zero Sz-component is generally present for any values ofXi andYi.

4.1. Effective 2Dmodel
Using the SS at =∣∣k 0 as basis we can derive an effective 2Dmodel for the SS.We use thewave functions in
equation (30), but with òij=0 to have a basis independent of strain.We note that in the absence of strain,ψ1 and
ψ2 represent spin up/down states respectively. Thematrix elements of theΓ-matrices in this basis read:

sáY G Yñ = - -∣ ∣ ( ) [ ] ( )B A
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B
asgn 1 , 32i j y ij1 1 1
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2
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2
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The effective 2Dmodel including k up to second order becomes:
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where d(k)=(d1(k), d2(k), d3(k)) is given by:

 

    

a a= - +

= - +

+ + + - - -

( ) ( )

(( )

( ( )) ) ( )∣∣

d
D

B
k k

D

B
Y Y k

A A A Y Y k a

k 1 Im

1 2

, 34

x y

zx xy x

zz zy xx yy y

1
1
2

1
2 1 2

1
2

1
2 3 4

2 21 22 3 4

11

New J. Phys. 20 (2018) 053041 MRBrems et al



      

a a=- - +

=- - + + + + + + -

( ) ( )

(( ) ( ( )) ) ( )∣∣

d
D

B
k k

D

B
Y Y k A A A Y Y k b

k 1 Re

1 2 , 34

x y

zy xy y zz zy xx yy x

2
1
2

1
2 1 2

1
2

1
2 3 4 2 21 22 3 4

    

b b=- - +

= - - + - +

( ) ( )

(( ( )) ( ) ) ( )

d
D

B
k k

D

B
X k X X k c

k 1 Im

1 2 . 34

x y

zy xx yy x zx xy y

3
1
2

1
2 1 2

1
2

1
2 3 3 4

Diagonalizing the effectiveHamiltonian gives the spectrum:
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This spectrum is different from equation (27), obtained from the 3Dmodel. The two spectra become equal,
however, if we takeα3=0.Wenote that the Berry curvature of the SS band vanishes identically,
i.e. W = ¶ ´ ¶ =( ) ˆ · [( ˆ) ( ˆ)]d d dk 0k kx y

.

5. Localization of SS andfinite size effect

In the case of afinite slab, a gapwill open in the SS spectrum at =∣∣k 0. This is due to the overlap of SS on
opposite surfaces. For a given thickness the overlapwill be highly dependent on the penetration depth of the SS.
From thewave functions the expectation value of the distance from the surface = -á ñd z can be calculated to:

=
+

a b

a b
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andwe see that d depends on strain through the band gap parameter, and the quantity a b+∣ ∣ ∣ ∣3
2

3
2 involving

the coefficients of the termsfirst order in kz.
The eigenenergies in the finite system can be calculated by imposing the boundary conditionΨ(±L/2)=0,

where L is the slab thickness. Now thewave function can bewritten as equation (25), but using all 4 solutions to
equation (22). At theΓ point, the solutions are±λ1,2 withλ1,2 given by equation (28). The secular equation of
the nontrivial solution for the coefficients gives:
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for even/odd states respectively. This is the same form as found using themodel without strain [19] , but here the
parameters ˜ ( )M and ˜( )C as well asλ1,2 from equation (28) depend on strain. The parameter ˜( )C is not
important, since it simply shifts all energies. Again the important quantities are ˜ ( )M and a b+∣ ∣ ∣ ∣3

2
3

2 .
Tofind the gap of the SSs,Δ, equation (37) has been solved numerically for L=n·9.547Å for integers n

between 2 and 6where L=9.547Å is the thickness of 1QL. First we have analyzed the effect of the bulk band

gap changed by strain, and taking a b+ =∣ ∣ ∣ ∣ A3
2

3
2

1 the value without strain.We see that increasing the bulk
band gap, decreases the SS band gap. Close to the phase transition this behavior is evident, since the SSmust
approach bulk states extending further into thematerial as the bulk gap approaches zero, giving a large coupling
between opposite surfaces. Aswe saw in section 3, the bulk gap ismost sensitive to òzz. Using equation (18)we
have plotted the SS gap as function of òzz infigure 6(a). A similar result was reported in [9] for a slab of 8QL using
DFT,where a gap openswhen tensile strain is applied. Our results points to the physical origin of this effect being
themodification of the spatial distribution of the SSwave functions.

In figure 6(b), we have plotted the dependence of the SS gap on a b+∣ ∣ ∣ ∣3
2

3
2 assuming a constant bulk

band gap parameter ofM=0.28 eV from [12] and settingM1=M2=0.Without strain

a b+ = =∣ ∣ ∣ ∣ ÅA 2.26 eV3
2

3
2

1 according to [12], but the quantitative dependence on strain has not been
determined.We see that the SS gap closes at low values, which is related to the fact that for
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a b+ < + -∣ ∣ ∣ ∣
˜ ∣ ∣M D D

B3
2

3
2 4

1
the solutions to equation (22), λi, are complex giving an oscillatory spatial

dependence of the SS. Oscillatory SS give oscillations in the SS gap as a function of L, which has been
theorized to signify topological phase transitions between a trivial 2D insulator and a quantum spin hall
phase [20–22].We note here that these oscillations are present only using the parameters of [1], not the
parameters of [12] as shown in [23]. Experimental evidence of oscillations in the gap remains inconclusive,
since both a simple decay of the gap for 2–5QL has been reported [24] as well as an increase in the gap from 2
to 3QL [25] signifying a topological phase transition between 2 and 3QL. The observed gaps are summarized
in table 4.

Figure 6.Band gap for thicknesses of 2 to 6 quintuple layers (QL). In (a) the effect of changing the bulk band gap by uniaxial strain on
the SS gapΔ is shown.Wehave used a relation between the bulk band gap and òzz from [8]. In this plot we have neglected the strain
dependence of a b+∣ ∣ ∣ ∣3

2
3

2 by settingA11=0. In (b)we show the SS gap as a function of a b+∣ ∣ ∣ ∣3
2

3
2 , assuming a constant bulk

band gap, i.e., settingM1=M2=0. The insets shows the expectation value of the distance to the surface for the SS in the semi-
infinite case, with the same horizontal axis. A qualitative agreement between the localization of the SS on single surface and the gap
induced by coupling between opposite surfaces is seen.We have used the parameters of themodel without strain from [12].

Table 4.Experimentalmeasurements of the surface
state gap, induced by coupling between opposite
surfaces. First row is from [24], second row is from
[25]. In the second row the gap increases from2 to 3
QL, signifying an oscillatory dependence of the gap
on the thickness.

L 2QL 3QL 4QL 5QL

Δ(eV) 0.25 0.138 0.07 0.041

Δ(eV) 0.28 0.34
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Wehave demonstrated that the gap of the SS can be tuned by strain.However, quantitative predictions

require access to the parameters relating the strain tensor to a b+∣ ∣ ∣ ∣3
2

3
2 . Tuning the band gap of the SS is

important for both applications and fundamental research.One particular experimental challenge is that the
layered structure of Bi2Se3makes it easy to fabricate integer numbers ofQL. Thus the gap dependence on the
layer thickness has only been experimentally studiedwith fewdata points, since the gap becomes too small to be
measured already at 6QL [24].With strain, it is be possible to increase the SS gap and investigate the thickness
dependence of the gap further. Another intriguing prospect would be tuning the gap via strain, so as to pass
through the topological transition in a controlledmanner.

6. Conclusion

Wehave derived themost general Hamiltonian for the Bi2Se3-class ofmaterials including terms to third
order in the wave vector, first order in electric andmagnetic fields, first order in strain and first order in both
strain andwave vector.We show that thismodel provides a description of a range of different effects of strain
on the electronic structure of thesematerials. Specifically we have analytically derived the spectrum of the SS
for a semi-infinite topological insulator, showing qualitatively the effects of strain on both the spectrum and
the spin structure. The terms first order in both wave vector and strain break the full rotational symmetry
close to =∣∣k 0, leading to an anisotropy in the Dirac cone otherwise absent for the simple (111) surface
termination. The spin structure is altered as well, and for some strain configurations a spin component
perpendicular to the surface arises. In an analysis of the finite size effect we show that increasing the bulk
band gap by virtue of strain, decreases the induced gap in the SS. Strain-tuning the SS gap gives new
possibilities for experimental investigation of the thickness dependence of the SS gap and control of
transport and optical properties.
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Appendix. Effectivemasses

Herewe give the expressions for the bulk effectivemasses including both contributions from strain and electric
fields. Upper (lower) signs refer to the conduction (valence) band.
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