10 research outputs found

    The Extended Water Footprint and illegal groundwater use in the Upper Guadiana Basin (Spain)

    Get PDF
    Tablas de Daimiel National Park is located in the Upper Guadiana Basin and represents one of the largest and most important wetlands in Europe. The long term ecological integrity of this wetland is inherently associated with the maintenance of a shallow groundwater table, namely the Western Mancha aquifer (WMA) or Aquifer 23. The intensive use of groundwater, mainly for irrigation, has led over the last decades to deep socio‐economic changes. Such intensive use has also lowered the water table of Aquifer 23, drastically reducing the flooded area of the wetland and threatening its ecological integrity. A number of plans and measures have been developed and implemented since the declaration of overexploitation of Aquifer 23 in the year 1987. The most recent one is the Special Plan for the Upper Guadiana (SPUG), approved in 2008. This Plan is the main measure to comply with achieving the objective of good quantitative and qualitative status required under the Water Framework Directive (2000). This paper offers a new type of integrated analysis which allows assessing under a common lens the physical, economic and social dimensions of groundwater use in the area. The first objective is to calculate the groundwater footprint of agricultural production in the Upper Guadiana basin and its evolution during 2000‐2008. For this purpose, we have applied the Extended Water Footprint (EWF) methodology ‐a novel approach based on the classical Water Footprint (WF) approach‐ that includes an assessment of the water productivity from an economic and social perspective. Compared to the classical WF, the EWF allows for a more complete overview of the sector, providing new insights for policy decisions (e.g. to define options and possibilities on water re‐allocation in order to achieve both better ecosystem conservation and social equity). The second objective is to use the EWF to compare the existing authorized and non‐authorized or illegal use of water. This allows us to discuss current initiatives by public authorities in relation to the existing frame of water right

    Water and agriculture

    Get PDF
    This chapter shows the strong links between water, agriculture and the economy in Latin America and Caribbean (LAC). Both green and blue water are vital for LAC's economies and for its food security. Awareness of LAC's virtual water trade volumes and water footprints alone will not solve the local or global water problems. However, the awareness gained increases the likelihood that optimized water allocation decisions, which consider the hydrological and economical aspects of water resources, are made. • Agriculture is a significant economic sector for many LAC countries with some being major world players in the agricultural commodities world markets, such is the case for Brazil and Argentina who contribute to 13% of the global green water export. At the micro level, agriculture still plays a significant role for the food security of the population. • The consumptive water use of agricultural production was on average 1,057Gm 3 / yr for the period 1996–2005; of which, 95% corresponds to the green water footprint, whereas 5% refers to the blue component. This indicates that LAC relies heavily on green water for agricultural production, i.e. rain-fed agriculture. • Maize is a fundamental crop in Argentina, Brazil, Chile, Mexico and Peru, representing 15% of the total agricultural blue and green water footprint (773,408hm 3 /yr) and contributing to 35% of the agricultural nitrogen pollution, estimated as grey water footprint, in Argentina, Brazil, Chile, Colombia, Mexico and Peru. Only in Mexico, maize contributes 60% of the agricultural grey water footprint. • Grazing represents 24% of the total green water footprint of agriculture in these countries. The blue water consumption by the animal water supply is very significant in Argentina, Brazil, Chile, Mexico and Peru, which amounts to 13% (38,825hm 3 /yr) of the total consumption

    River basins as social-ecological systems: linking levels of societal and ecosystem water metabolism in a semiarid watershed

    No full text
    River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social-ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We found a marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted

    River basins as socio-ecological systems: linking levels of societal and ecosystem metabolism in a Mediterranean watershed

    No full text
    River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We founda marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted

    A Participatory Approach to Exploring Nexus Challenges: A Case Study on the Pinios River Basin, Greece

    No full text
    The conservation of natural resources is indispensable for supporting sustainable development. Water–Energy–Food–Ecosystem (WEFE) nexus management is widely acknowledged as the utmost priority of our time. Considering the specificities of the different nexus sectors, conflicting views of sustainability may arise from different stakeholders. This paper presents and analyses an effective stakeholders’ participation strategy aiming at identifying WEFE challenges in the Pinios River Basin (PRB), the most agriculturally productive and natural resource-stressed basin of Greece. The presented methodology was developed in the context of a Learning and Action Alliance (LAA) scheme adopted by the H2020 REXUS project, intended to support resilient nexus system management with the engagement of stakeholders. The proposed comprehensive methodology comprises multiple phases, including “framing”, “mapping”, “involvement”, “co-production”, and “sharing” phases. The involvement phase is the most interactive one, including the organisation and outputs of efficient crowdsourcing theme sessions organised in the framework of the first REXUS PRB stakeholders’ workshop. This paper illustrates and analyses stakeholders’ perceptions regarding nexus status in the PRB and reveals the most critical challenges in the pilot basin, along with their interdependencies and correlations. The determination of nexus challenges insights by stakeholders could significantly contribute to redefining policies so that they align with sustainable development aims. This methodology is proposed to form the baseline strategy in stakeholders’ engagement for future nexus management studies

    Governance: a ‘whole-of-society’ approach

    No full text
    In UNESCO World Water Assessment Programme (WWAP). The United Nations World Water Development Report 2023: partnerships and cooperation for water. Paris, France: UNESC
    corecore