116 research outputs found

    Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity

    Full text link
    Recently we discussed a multimetric gravity theory containing several copies of standard model matter each of which couples to its own metric tensor. This construction contained dark matter sectors interacting repulsively with the visible matter sector, and was shown to lead to cosmological late-time acceleration. In order to test the theory with high-precision experiments within the solar system we here construct a simple extension of the parametrized post-Newtonian (PPN) formalism for multimetric gravitational backgrounds. We show that a simplified version of this extended formalism allows the computation of a subset of the PPN parameters from the linearized field equations. Applying the simplified formalism we find that the PPN parameters of our theory do not agree with the observed values, but we are able to improve the theory so that it becomes consistent with experiments of post-Newtonian gravity and still features its promising cosmological properties.Comment: 19 pages, no figures, journal versio

    Instabilities in the nonsymmetric theory of gravitation

    Get PDF
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild metric. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This theory contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Next we discuss NGT beyond linearized level and conjecture that the instabilities are not a relic of the linearization, but are a general feature of the full theory. Finally we show that one cannot add ad-hoc constraints to remove the instabilities as is possible with the instabilities found in NGT by Clayton.Comment: 29 page

    Problems and hopes in nonsymmetric gravity

    Full text link
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild mass. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This form contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Based on the linearized lagrangian we know to be stable, we consider the generation and evolution of quantum fluctuations of the antisymmetric gravitational field (B-field) from inflation up to the present day. We find that a B-field with a mass m ~ 0.03(H_I/10^(13)GeV)^4 eV is an excellent dark matter candidate.Comment: 9 pages, 1 figure. Based on two talks by the authors at the 2nd International Conference on Quantum Theories and Renormalization Group in Gravity and Cosmology (IRGAC) 2006, Barcelon

    Unusual Features of Varying Speed of Light Cosmologies

    Get PDF
    We contrast features of simple varying speed of light (VSL) cosmologies with inflationary universe models. We present new features of VSL cosmologies and show that they face problems explaining the cosmological isotropy problem. We also find that if c falls fast enough to solve the flatness and horizon problems then the quantum wavelengths of massive particle states and the radii of primordial black holes can grow to exceed the scale of the particle horizon. This may provide VSL cosmologies with a self-reproduction property. The constraint of entropy increase is also discussed. The new problems described in the this letter provide a set of bench tests for more sophisticated VSL theories to pass.Comment: expanded version, 12 page

    Gravitational solution to the Pioneer 10/11 anomaly

    Full text link
    A fully relativistic modified gravitational theory including a fifth force skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The theory allows for a variation with distance scales of the gravitational constant G, the fifth force skew symmetric field coupling strength omega and the mass of the skew symmetric field mu=1/lambda. A fit to the available anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a phenomenological representation of the "running" constants and values of the associated parameters are shown to exist that are consistent with fifth force experimental bounds. The fit to the acceleration data is consistent with all current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4) and (12) and a third table including our predictions for the anomalous perihelion advance of the planets was adde

    Qualitative Analysis of Universes with Varying Alpha

    Get PDF
    Assuming a Friedmann universe which evolves with a power-law scale factor, a=tna=t^{n}, we analyse the phase space of the system of equations that describes a time-varying fine structure 'constant', α\alpha, in the Bekenstein-Sandvik-Barrow-Magueijo generalisation of general relativity. We have classified all the possible behaviours of α(t)\alpha (t) in ever-expanding universes with different nn and find new exact solutions for α(t)\alpha (t). We find the attractors points in the phase space for all nn. In general, α\alpha will be a non-decreasing function of time that increases logarithmically in time during a period when the expansion is dust dominated (n=2/3n=2/3), but becomes constant when n>2/3n>2/3. This includes the case of negative-curvature domination (n=1n=1). α\alpha also tends rapidly to a constant when the expansion scale factor increases exponentially. A general set of conditions is established for α\alpha to become asymptotically constant at late times in an expanding universe.Comment: 26 pages, 6 figure

    Time Delay Predictions in a Modified Gravity Theory

    Full text link
    The time delay effect for planets and spacecraft is obtained from a fully relativistic modified gravity theory including a fifth force skew symmetric field by fitting to the Pioneer 10/11 anomalous acceleration data. A possible detection of the predicted time delay corrections to general relativity for the outer planets and future spacecraft missions is considered. The time delay correction to GR predicted by the modified gravity is consistent with the observational limit of the Doppler tracking measurement reported by the Cassini spacecraft on its way to Saturn, and the correction increases to a value that could be measured for a spacecraft approaching Neptune and Pluto.Comment: 5 pages, LaTex file, no figures. Corrections to Table

    On the recently determined anomalous perihelion precession of Saturn

    Full text link
    The astronomer E.V. Pitjeva, by analyzing with the EPM2008 ephemerides a large number of planetary observations including also two years (2004-2006) of normal points from the Cassini spacecraft, phenomenologically estimated a statistically significant non-zero correction to the usual Newtonian/Einsteinian secular precession of the longitude of the perihelion of Saturn, i.e. \Delta\dot\varpi_Sat = -0.006 +/- 0.002 arcsec/cy; the formal, statistical error is 0.0007 arcsec/cy. It can be explained neither by any of the standard classical and general relativistic dynamical effects mismodelled/unmodelled in the force models of the EPM2008 ephemerides nor by several exotic modifications of gravity recently put forth to accommodate certain cosmological/astrophysical observations without resorting to dark energy/dark matter. Both independent analyses by other teams of astronomers and further processing of larger data sets from Cassini will be helpful in clarifying the nature and the true existence of the anomalous precession of the perihelion of Saturn.Comment: LaTex2e, 14 pages, no figures, 2 tables. Accepted by The Astronomical Journal (AJ

    Spontaneous Lorentz Violation and the Long-Range Gravitational Preferred-Frame Effect

    Full text link
    Lorentz-violating operators involving Standard Model fields are tightly constrained by experimental data. However, bounds are more model-independent for Lorentz violation appearing in purely gravitational couplings. The spontaneous breaking of Lorentz invariance by the vacuum expectation value of a vector field selects a universal rest frame. This affects the propagation of the graviton, leading to a modification of Newton's law of gravity. We compute the size of the long-range preferred-frame effect in terms of the coefficients of the two-derivative operators in the low-energy effective theory that involves only the graviton and the Goldstone bosons.Comment: 11 pages, no figures, revtex4. v4: Replaced to match version to appear in Phys. Lett. B (minor corrections of form

    Is it e or is it c? Experimental Tests of Varying Alpha

    Get PDF
    Is the recent evidence for a time-varying fine structure 'constant' α\alpha to be interpreted as a varying ee, cc, ℏ\hbar, or a combination thereof? We consider the simplest varying electric charge and varying speed of light theories (VSL) and prove that for the same type of dark matter they predict opposite senses of variation in α\alpha over cosmological times. We also show that unlike varying ee theories, VSL theories do not predict violations of the weak equivalence principle (WEP). Varying ee theories which explain astronomical inferences of varying α\alpha predict WEP violations only an order of magnitude smaller than existing E\"otv\"os experiment limits but could be decisively tested by STEP. We finally exhibit a set of atomic-clock and related experiments for which {\it all} (hyperbolic) varying α\alpha theories predict non-null results. They provide independent tests of the recent astronomical evidence
    • …
    corecore