4,996 research outputs found

    Revisiting the double-binary-pulsar probe of non-dynamical Chern-Simons gravity

    Get PDF
    One of the popular modifications to the theory of general relativity is non-dynamical Chern-Simons (CS) gravity, in which the metric is coupled to an externally prescribed scalar field. Setting accurate constraints to the parameters of the theory is important owing to their implications for the scalar field and/or the underlying fundamental theory. The current best constraints rely on measurements of the periastron precession rate in the double-binary-pulsar system and place a very tight bound on the characteristic CS lengthscale k_cs^{-1} <~ 3*10^{-9} km. This paper considers several effects that were not accounted for when deriving this bound and lead to a substantial suppression of the predicted rate of periastron precession. It is shown, in particular, that the point mass approximation for extended test bodies does not apply in this case. The constraint to the characteristic CS lengthscale is revised to k_cs^{-1} <~ 0.4 km, eight orders of magnitude weaker than what was previously found.Comment: 12 pages, 4 figures, to be submitted to PRD. Comments are welcom

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. Evidence for the strong equivalence principle to second post-Newtonian order

    Full text link
    Using post-Newtonian equations of motion for fluid bodies valid to the second post-Newtonian order, we derive the equations of motion for binary systems with finite-sized, non-spinning but arbitrarily shaped bodies. In particular we study the contributions of the internal structure of the bodies (such as self-gravity) that would diverge if the size of the bodies were to shrink to zero. Using a set of virial relations accurate to the first post-Newtonian order that reflect the stationarity of each body, and redefining the masses to include 1PN and 2PN self-gravity terms, we demonstrate the complete cancellation of a class of potentially divergent, structure-dependent terms that scale as s^{-1} and s^{-5/2}, where s is the characteristic size of the bodies. This is further evidence of the Strong Equivalence Principle, and supports the use of post-Newtonian approximations to derive equations of motion for strong-field bodies such as neutron stars and black holes. This extends earlier work done by Kopeikin.Comment: 14 pages, submitted to Phys. Rev. D; small changes to coincide with published versio

    Testing Scalar-Tensor Gravity Using Space Gravitational-Wave Interferometers

    Get PDF
    We calculate the bounds which could be placed on scalar-tensor theories of gravity of the Jordan, Fierz, Brans and Dicke type by measurements of gravitational waveforms from neutron stars (NS) spiralling into massive black holes (MBH) using LISA, the proposed space laser interferometric observatory. Such observations may yield significantly more stringent bounds on the Brans-Dicke coupling parameter \omega than are achievable from solar system or binary pulsar measurements. For NS-MBH inspirals, dipole gravitational radiation modifies the inspiral and generates an additional contribution to the phase evolution of the emitted gravitational waveform. Bounds on \omega can therefore be found by using the technique of matched filtering. We compute the Fisher information matrix for a waveform accurate to second post-Newtonian order, including the effect of dipole radiation, filtered using a currently modeled noise curve for LISA, and determine the bounds on \omega for several different NS-MBH canonical systems. For example, observations of a 1.4 solar mass NS inspiralling to a 1000 solar mass MBH with a signal-to-noise ratio of 10 could yield a bound of \omega > 240,000, substantially greater than the current experimental bound of \omega > 3000.Comment: 18 pages, 4 figures, 1 table; to be submitted to Phys. Rev.

    Cerenkov's Effect and Neutrino Oscillations in Loop Quantum Gravity

    Get PDF
    Bounds on the scale parameter {\cal L} arising in loop quantum gravity theory are derived in the framework of Cerenkov's effect and neutrino oscillations. Assuming that {\cal L} is an universal constant, we infer {\cal L}> 10^{-18}eV^{-1}, a bound compatible with ones inferred in different physical context.Comment: 6 pages, no figures, in print on MPL

    Limit to General Relativity in f(R) theories of gravity

    Full text link
    We discuss two aspects of f(R) theories of gravity in metric formalism. We first study the reasons to introduce a scalar-tensor representation for these theories and the behavior of this representation in the limit to General Relativity, f(R)--> R. We find that the scalar-tensor representation is well behaved even in this limit. Then we work out the exact equations for spherically symmetric sources using the original f(R) representation, solve the linearized equations, and compare our results with recent calculations of the literature. We observe that the linearized solutions are strongly affected by the cosmic evolution, which makes very unlikely that the cosmic speedup be due to f(R) models with correcting terms relevant at low curvatures.Comment: 8 pages; small changes to match published version (some comments, references added, title corrected); to appear in Phys.Rev.

    Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band

    Full text link
    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar-cycle time scales. Here we compare solar irradiance in the 220 nm to 240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.Comment: 8 pages, 2 figures, conference proceedings to appear in Surveys in Geophysic

    Probing the Brans-Dicke Gravitational Field by Cerenkov Radiation

    Get PDF
    The possibility that a charged particle propagating in a gravitational field described by Brans-Dicke theory of gravity could emit Cerenkov radiation is explored. This process is kinematically allowed depending on parameters occurring in the theory. The Cerenkov effect disappears as the BD parameter omega tends to inftinity, i.e. in the limit in which the Einstein theory is recovered, giving a signature to probe the validity of the Brans-Dicke theory.Comment: 8 pages, no figure

    K-Chameleon and the Coincidence Problem

    Full text link
    In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation dominated epoch, the interaction between the k-chameleon field and background matters can be neglected, the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch, only two kinds of attractors may exist: one is the familiar {\bf K} attractor and the other is a completely {\em new}, dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C} attractor, the fraction energy densities of the k-chameleon Ωϕ\Omega_{\phi} and dust matter Ωm\Omega_m are fixed and comparable, and the universe will undergo a power-law accelerated expansion. One can adjust the model so that the {\bf K} attractor do not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and references added, to appear in PRD, v3: published versio

    Probing Strong-Field Scalar-Tensor Gravity with Gravitational Wave Asteroseismology

    Full text link
    We present an alternative way of tracing the existence of a scalar field based on the analysis of the gravitational wave spectrum of a vibrating neutron star. Scalar-tensor theories in strong-field gravity can potentially introduce much greater differences in the parameters of a neutron star than the uncertainties introduced by the various equations of state. The detection of gravitational waves from neutron stars can set constraints on the existence and the strength of scalar fields. We show that the oscillation spectrum is dramatically affected by the presence of a scalar field, and can provide unique confirmation of its existence.Comment: 14 pages, 7 figure

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. IV. Radiation reaction for binary systems with spin-spin coupling

    Get PDF
    Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies, including spin-spin effects. In particular we determine the effects of radiation-reaction coupled to spin-spin effects on the two-body equations of motion, and on the evolution of the spins. We find that radiation damping causes a 3.5PN order, spin-spin induced precession of the individual spins. This contrasts with the case of spin-orbit coupling, where there is no effect on the spins at 3.5PN order. Employing the equations of motion and of spin precession, we verify that the loss of total energy and total angular momentum induced by spin-spin effects precisely balances the radiative flux of those quantities calculated by Kidder et al.Comment: 10 pages, coincides with published versio
    • …
    corecore