4,044 research outputs found

    Finally, results from Gravity Probe-B

    Full text link
    Nearly fifty years after its inception, the Gravity Probe B satellite mission delivers the first measurements of how a spinning gyroscope precesses in the gravitational warping of spacetime.Comment: A Viewpoint article, published in Physics 4, 43 (2011), available at http://physics.aps.org/articles/v4/43 Submitted to the arXiv by permission of the American Physical Societ

    Strong field effects on binary systems in Einstein-aether theory

    Full text link
    "Einstein-aether" theory is a generally covariant theory of gravity containing a dynamical preferred frame. This article continues an examination of effects on the motion of binary pulsar systems in this theory, by incorporating effects due to strong fields in the vicinity of neutron star pulsars. These effects are included through an effective approach, by treating the compact bodies as point particles with nonstandard, velocity dependent interactions parametrized by dimensionless "sensitivities". Effective post-Newtonian equations of motion for the bodies and the radiation damping rate are determined. More work is needed to calculate values of the sensitivities for a given fluid source, so precise constraints on the theory's coupling constants cannot yet be stated. It is shown, however, that strong field effects will be negligible given current observational uncertainties if the dimensionless couplings are less than roughly 0.01 and two conditions that match the PPN parameters to those of pure general relativity are imposed. In this case, weak field results suffice and imply one further condition on the couplings. Thus, there exists a one-parameter family of Einstein-aether theories with "small-enough" couplings that passes all current observational tests. No conclusion can yet be reached for large couplings.Comment: 23 pages, 1 figure; v2: fixed error in Eqn. (70) and resulting bounds on c'

    Generic features of Einstein-Aether black holes

    Full text link
    We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical PPN parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 "horizon" inside an event horizon. We allow a singularity at a spin-0 "horizon" since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to ADM mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.Comment: 9 pages, 9 figures, basic equations and their analytic arguments are adde

    Constraining f(R) Gravity as a Scalar Tensor Theory

    Get PDF
    We search for viable f(R) theories of gravity, making use of the equivalence between such theories and scalar-tensor gravity. We find that models can be made consistent with solar system constraints either by giving the scalar a high mass or by exploiting the so-called chameleon effect. However, in both cases, it appears likely that any late-time cosmic acceleration will be observationally indistinguishable from acceleration caused by a cosmological constant. We also explore further observational constraints from, e.g., big bang nucleosynthesis and inflation.Comment: 15 pages, 5 figure

    Towards the use of the most massive black hole candidates in AGN to test the Kerr paradigm

    Full text link
    The super-massive objects in galactic nuclei are thought to be the Kerr black holes predicted by General Relativity, although a definite proof of their actual nature is still lacking. The most massive objects in AGN (M109MM \sim 10^9 M_\odot) seem to have a high radiative efficiency (η0.4\eta \sim 0.4) and a moderate mass accretion rate (Lbol/LEdd0.3L_{\rm bol}/L_{\rm Edd} \sim 0.3). The high radiative efficiency could suggest they are very rapidly-rotating black holes. The moderate luminosity could indicate that their accretion disk is geometrically thin. If so, these objects could be excellent candidates to test the Kerr black hole hypothesis. An accurate measurement of the radiative efficiency of an individual AGN may probe the geometry of the space-time around the black hole candidate with a precision comparable to the one achievable with future space-based gravitational-wave detectors like LISA. A robust evidence of the existence of a black hole candidate with η>0.32\eta > 0.32 and accreting from a thin disk may be interpreted as an indication of new physics. For the time being, there are several issues to address before using AGN to test the Kerr paradigm, but the approach seems to be promising and capable of providing interesting results before the advent of gravitational wave astronomy.Comment: 12 pages, 6 figures. v2: some typos correcte

    Constraining the evolutionary history of Newton's constant with gravitational wave observations

    Full text link
    Space-borne gravitational wave detectors, such as the proposed Laser Interferometer Space Antenna, are expected to observe black hole coalescences to high redshift and with large signal-to-noise ratios, rendering their gravitational waves ideal probes of fundamental physics. The promotion of Newton's constant to a time-function introduces modifications to the binary's binding energy and the gravitational wave luminosity, leading to corrections in the chirping frequency. Such corrections propagate into the response function and, given a gravitational wave observation, they allow for constraints on the first time-derivative of Newton's constant at the time of merger. We find that space-borne detectors could indeed place interesting constraints on this quantity as a function of sky position and redshift, providing a {\emph{constraint map}} over the entire range of redshifts where binary black hole mergers are expected to occur. A LISA observation of an equal-mass inspiral event with total redshifted mass of 10^5 solar masses for three years should be able to measure G˙/G\dot{G}/G at the time of merger to better than 10^(-11)/yr.Comment: 11 pages, 2 figures, replaced with version accepted for publication in Phys. Rev. D

    Visualizing classification of natural video sequences using sparse, hierarchical models of cortex.

    Get PDF
    Recent work on hierarchical models of visual cortex has reported state-of-the-art accuracy on whole-scene labeling using natural still imagery. This raises the question of whether the reported accuracy may be due to the sophisticated, non-biological back-end supervised classifiers typically used (support vector machines) and/or the limited number of images used in these experiments. In particular, is the model classifying features from the object or the background? Previous work (Landecker, Brumby, et al., COSYNE 2010) proposed tracing the spatial support of a classifier’s decision back through a hierarchical cortical model to determine which parts of the image contributed to the classification, compared to the positions of objects in the scene. In this way, we can go beyond standard measures of accuracy to provide tools for visualizing and analyzing high-level object classification. We now describe new work exploring the extension of these ideas to detection of objects in video sequences of natural scenes

    Progress in Lunar Laser Ranging Tests of Relativistic Gravity

    Full text link
    Analyses of laser ranges to the Moon provide increasingly stringent limits on any violation of the Equivalence Principle (EP); they also enable several very accurate tests of relativistic gravity. We report the results of our recent analysis of Lunar Laser Ranging (LLR) data giving an EP test of \Delta (M_G/M_I)_{EP} =(-1.0 +/- 1.4) x 10^{-13}. This result yields a Strong Equivalence Principle (SEP) test of \Delta (M_G/M_I)_{SEP} =(-2.0 +/- 2.0) x 10^{-13}. Also, the corresponding SEP violation parameter \eta is (4.4 +/- 4.5) x 10^{-4}, where \eta=4\beta-\gamma-3 and both \beta and \gamma are parametrized post-Newtonian (PPN) parameters. Using the recent Cassini result for the parameter \gamma, PPN parameter \beta is determined to be \beta-1=(1.2 +/- 1.1) x 10^{-4}. The geodetic precession test, expressed as a relative deviation from general relativity, is K_{gp}=-0.0019 +/- 0.0064. The search for a time variation in the gravitational constant results in \dot G/G=(4 +/- 9) x 10^{-13} yr^{-1}, consequently there is no evidence for local (~1AU) scale expansion of the solar system.Comment: 4 pages, revtex4, minor changes made for publicatio

    Visser's Massive Gravity Bimetric Theory Revisited

    Full text link
    A massive gravity theory was proposed by Visser in the late nineties. This theory, based on a backgroung metric bαβb_{\alpha \beta} and on an usual dynamical metric gαβg_{\alpha \beta} has the advantage of being free of ghosts as well as discontinuities present in other massive theories proposed in the past. In the present investigation, the equations of Visser's theory are revisited with a particular care on the related conservation laws.\ It will be shown that a multiplicative factor is missing in the graviton tensor originally derived by Visser, which has no incidence on the weak field approach but becomes important in the strong field regime when, for instance, cosmological applications are considered. In this case, contrary to some previous claims found in the literature, we conclude that a non-static background metric is required in order to obtain a solution able to mimic the Λ\LambdaCDM cosmology.Comment: 10 pages - Accepted for publication in Physical Review
    corecore