2,961 research outputs found

    Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device.

    Get PDF
    Liquid crystal over silicon (LCoS) spatial light modulator technology has become dominant in industries such as pico-projection, which require high-quality reflective microdisplays for intensity modulation of light. They are, however, restricted from being used in wider optical applications, such as computer-generated holography, adaptive optics, and optical correlation, due to their phase modulation ability. The main drawback of these devices is that their modulation is based on simple planar or twisted nematic liquid crystals, which are inherently slow mechanisms due to their viscoelastic properties. Their use is also limited due to fact that the phase modulation is dependent on the state of polarization of the illumination. In this paper, we demonstrate that a polymer-stabilized blue-phase liquid crystal can offer both phase modulation and high speed switching in a silicon backplane device which is independent of the input polarization state. The LCoS device shows continuous phase modulation of light with a submillisecond switching time and insensitivity to the input light polarization direction. This type of phase modulation opens up a whole new class of applications for LCoS technology.RMH would like to acknowledge the financial support of the Dr. Richard Norman Scholarship fund. AL would like to acknowledge support from the German Research Foundation, (grant 1922/1-1). We would also like to acknowledge Dr. F. Castles for his help in identifying and stabilizing the blue phase.This is the accepted manuscript for a paper published in Applied Optics, Vol. 53, Issue 29, pp. 6925-6929 (2014) DOI: 10.1364/AO.53.00692

    Approximating Computational Fluid Dynamics for Generative Design

    Get PDF
    Wind loads are a critical consideration in the early-stage design of tall buildings for mitigation of wind-induced forces through form modification. Existing research in computational fluid dynamics (CFD) development tends either towards fast-inaccurate or slow-accurate approaches; therefore offering either constrictive response time or inadequate accuracy. Novel approaches that combine both speed and accuracy are required to keep pace with developments in parametric design softwares, such as GenerativeComponents. These software tools, primarily used in early-stage generative design, allow for broad exploration and optimisation within the potential design space, which in turn requires commensurate fast-yet-accurate analysis tools. This thesis investigates the use of reduced-order models to approximate CFD simulations of wind pressure on tall buildings. It is hypothesised that: firstly, wind-induced surface pressure on tall buildings simulated by CFD can be locally approximated by geometric features; and secondly, reduced-order model predictions dominate CFD simulations in both time or accuracy and are therefore a novel non-dominated approach. Predictions are made of individual vertex pressure based on input features formed from local shape analysis. The vertex samples originate from a procedural model set which is evaluated with either steady-state Reynolds-averaged Navier-Stokes (RANS) or transient large eddy simulation (LES). An artificial neural network is used for model reduction with the training set of vertex samples; the basis methodology of which is tested on a range of study complexities. To prove the scalability of the approach, this culminates in the use of LES as the basis simulation, a test set of realistically complex building models, and an alternative approach to urban wind interference generalisation is also described, whereby a one-off large-scale context CFD simulation can be used as input to repeatable design model predictions. Furthermore, a prototype tool and an outline for its integration with an existing online analysis framework currently under development is presented. The quantitative and qualitative results of the studies show it is possible to approximate surface pressure from local shape features, thereby decoupling the prediction from the basis simulation. The reduced-order model can achieve fast-yet-accurate results, since prediction accuracy and time are invariant, or independent, of basis simulation accuracy and time; being instead solely a function of the reduced-order model performance and the geometric complexity or number of test mesh vertices. Evidence is demonstrated by the positioning of the results as a non-dominated solution in the time-accuracy objective space and the subsequent alteration of the existing Pareto frontier

    The impact of flooding on road transport: A depth-disruption function

    Get PDF
    \ua9 2017 Transport networks underpin economic activity by enabling the movement of goods and people. During extreme weather events transport infrastructure can be directly or indirectly damaged, posing a threat to human safety, and causing significant disruption and associated economic and social impacts. Flooding, especially as a result of intense precipitation, is the predominant cause of weather-related disruption to the transport sector. Existing approaches to assess the disruptive impact of flooding on road transport fail to capture the interactions between floodwater and the transport system, typically assuming a road is fully operational or fully blocked, which is not supported by observations. In this paper we develop a relationship between depth of standing water and vehicle speed. The function that describes this relationship has been constructed by fitting a curve to video analysis supplemented by a range of quantitative data that has be extracted from existing studies and other safety literature. The proposed relationship is a good fit to the observed data, with an R-squared of 0.95. The significance of this work is that it is simple to incorporate our function into existing transport models to produce better estimates of flood induced delays and we demonstrate this with an example from the 28th June 2012 flood in Newcastle upon Tyne, UK

    Are mammography image acquisition factors, compression pressure and paddle tilt, associated with breast cancer detection in screening?

    Get PDF
    Objectives: To assess the associations between objectively measured mammographic compression pressure and paddle tilt and breast cancer (BC) detected at the same (“contemporaneous”) screen, subsequent screens, or in-between screens (interval cancers). Methods: Automated pressure and paddle tilt estimates were derived for 80,495 mammographic examina-tions in a UK population-based screening programme. Adjusted logistic regression models were fitted to estimate the associations of compression parameters with BC detected at contemporaneous screen (777 cases). Nested case-control designs were used to estimate associations of pressure and tilt with: (a) interval cancer (148 cases/625 age-matched controls) and (b) subsequent screen-detected cancer (344/1436), via condi-tional logistic regression. Results: Compression pressure was negatively associated with odds of BC at contemporaneous screen (odds ratio (OR) for top versus bottom third of the pressure distribution: 0.74; 95% CI 0.60, 0.92; P-for-linear-trend (Pt) = 0.007). There was weak evidence that moderate pressure at screening was associated with lower odds of interval cancer (OR for middle versus bottom third: 0.63; 95% CI 0.38, 1.05; p = 0.079), but no association was found between pressure and the odds of BC at subsequent screen. There was no evidence that paddle tilt was associated with the odds of contemporaneous, subsequent screen or interval cancer detection. Conclusions: Findings are consistent with compression pressure, but not paddle tilt, affecting the performance of mammographic screening by interfering with its ability to detect cancers. Advances in knowledge: Inadequate or excessive compression pressure at screening may contribute to a reduced ability to detect cancers, resulting in a greater number of interval cancer cases

    Left-right breast asymmetry and risk of screen-detected and interval cancers in a large population-based screening population

    Get PDF
    OBJECTIVES: To assess the associations between automated volumetric estimates of mammographic asymmetry and breast cancers detected at the same ("contemporaneous") screen, at subsequent screens, or in between (interval cancers). METHODS: Automated measurements from mammographic images (N = 79,731) were used to estimate absolute asymmetry in breast volume (BV) and dense volume (DV) in a large ethnically diverse population of attendees of a UK breast screening programme. Logistic regression models were fitted to assess asymmetry associations with the odds of a breast cancer detected at contemporaneous screen (767 cases), adjusted for relevant confounders.Nested case-control investigations were designed to examine associations between asymmetry and the odds of: (a) interval cancer (numbers of cases/age-matched controls: 153/646) and (b) subsequent screen-detected cancer (345/1438), via conditional logistic regression. RESULTS: DV, but not BV, asymmetry was positively associated with the odds of contemporaneous breast cancer (P-for-linear-trend (Pt) = 0.018). This association was stronger for first (prevalent) screens (Pt = 0.012). Both DV and BV asymmetry were positively associated with the odds of an interval cancer diagnosis (Pt = 0.060 and 0.030, respectively). Neither BV nor DV asymmetry were associated with the odds of having a subsequent screen-detected cancer. CONCLUSIONS: Increased DV asymmetry was associated with the risk of a breast cancer diagnosis at a contemporaneous screen or as an interval cancer. BV asymmetry was positively associated with the risk of an interval cancer diagnosis. ADVANCES IN KNOWLEDGE: The findings suggest that DV and BV asymmetry may provide additional signals for detecting contemporaneous cancers and assessing the likelihood of interval cancers in population-based screening programmes

    Peptidomimetic inhibitors of N-myristoyltransferase from human malaria and leishmaniasis parasites

    Get PDF
    N-Myristoyltransferase (NMT) has been shown to be essential in Leishmania and subsequently validated as a drug target in Plasmodium. Herein, we discuss the use of antifungal NMT inhibitors as a basis for inhibitor development resulting in the first sub-micromolar peptidomimetic inhibitors of Plasmodium and Leishmania NMTs. High-resolution structures of these inhibitors with Plasmodium and Leishmania NMTs permit a comparative analysis of binding modes, and provide the first crystal structure evidence for a ternary NMT-Coenzyme A/myristoylated peptide product complex

    Ethnic and age differences in right-left breast asymmetry in a large population-based screening population

    Get PDF
    OBJECTIVE: Exposure to sex hormones is important in the pathogenesis of breast cancer and inability to tolerate such exposure may be reflected in increased asymmetrical growth of the breasts. This study aims to characterize, for the first time, asymmetry in breast volume (BV) and radiodense volume (DV) in a large ethnically diverse population. METHODS: Automated measurements from digital raw mammographic images of 54,591 cancer-free participants (aged 47-73) in a UK breast screening programme were used to calculate absolute (cm3) and relative asymmetry in BV and DV. Logistic regression models were fitted to assess asymmetry associations with age and ethnicity. RESULTS: BV and DV absolute asymmetry were positively correlated with the corresponding volumetric dimension (BV or DV). BV absolute asymmetry increased, whilst DV absolute asymmetry decreased, with increasing age (P-for-linear-trend <0.001 for both). Relative to Whites, Blacks had statistically significantly higher, and Chinese lower, BV and DV absolute asymmetries. However, after adjustment for the corresponding underlying volumetric dimension the age and ethnic differences were greatly attenuated. Median relative (fluctuating) BV and DV asymmetry were 2.34 and 3.28% respectively. CONCLUSION: After adjusting for the relevant volumetric dimension (BV or DV), age and ethnic differences in absolute breast asymmetry were largely resolved. ADVANCES IN KNOWLEDGE: Previous small studies have reported breast asymmetry-breast cancer associations. Automated measurements of asymmetry allow the conduct of large-scale studies to further investigate these associations

    Peptidomimetic inhibitors of N-myristoyltransferase from human malaria and leishmaniasis parasites

    Get PDF
    N-Myristoyltransferase (NMT) has been shown to be essential in Leishmania and subsequently validated as a drug target in Plasmodium. Herein, we discuss the use of antifungal NMT inhibitors as a basis for inhibitor development resulting in the first sub-micromolar peptidomimetic inhibitors of Plasmodium and Leishmania NMTs. High-resolution structures of these inhibitors with Plasmodium and Leishmania NMTs permit a comparative analysis of binding modes, and provide the first crystal structure evidence for a ternary NMT-Coenzyme A/myristoylated peptide product complex
    corecore