18,327 research outputs found
A failsafe analysis using NASTRAN's piecewise linear analysis and a nine node linear crack element
A two-dimensional crack element was implemented into NASTRAN as a user dummy element and used to study failsafe characteristics of the C5A fuselage. The element is formulated from Reitsner's functional requiring that it satisfy compatability with the linear boundary displacement elements in NASTRAN. Its accuracy is demonstrated by analyzing for the stress intensity factors of two simple crack configurations for which there are classic solutions
NASTRAN used in a production environment
A finite element analysis procedure built around the NASTRAN system is assessed. A number of support programs that were either written or modified to interface with NASTRAN and some improvements that were made to NASTRAN itself are noted. Some typical models are analyzed and an actual schedule is followed for constructing and analyzing the models to support a large design program
Evaluation of nonmetallic thermal protection materials for the manned space shuttle. Volume 1, task 1: Assessment of technical risks associated with utilization of nonmetallic thermal protection system
Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook
Higher Order Correlations in Quantum Chaotic Spectra
The statistical properties of the quantum chaotic spectra have been studied,
so far, only up to the second order correlation effects. The numerical as well
as the analytical evidence that random matrix theory can successfully model the
spectral fluctuatations of these systems is available only up to this order.
For a complete understanding of spectral properties it is highly desirable to
study the higher order spectral correlations. This will also inform us about
the limitations of random matrix theory in modelling the properties of quantum
chaotic systems. Our main purpose in this paper is to carry out this study by a
semiclassical calculation for the quantum maps; however results are also valid
for time-independent systems.Comment: Revtex, Four figures (Postscript files), Phys. Rev E (in press
Gegenbauer-solvable quantum chain model
In an innovative inverse-problem construction the measured, experimental
energies , , ... of a quantum bound-state system are assumed
fitted by an N-plet of zeros of a classical orthogonal polynomial . We
reconstruct the underlying Hamiltonian (in the most elementary
nearest-neighbor-interaction form) and the underlying Hilbert space
of states (the rich menu of non-equivalent inner products is offered). The
Gegenbauer's ultraspherical polynomials are chosen for
the detailed illustration of technicalities.Comment: 29 pp., 1 fi
Chemical Evolution in the Carina Dwarf Spheroidal
We present metallicities for 487 red giants in the Carina dwarf spheroidal
(dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT)
spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion
of 0.25 dex, whereas the full spread in metallicities is at least one dex. The
analysis of the radial distribution of metallicities reveals that an excess of
metal poor stars resides in a region of larger axis distances. These results
can constrain evolutionary models and are discussed in the context of chemical
evolution in the Carina dSph.Comment: 3 pages, 2 figures, to be published in the proceedings of the
ESO/Arcetri-workshop on "Chemical Abundances and Mixing in Stars", 13.-17.
Sep. 2004, Castiglione della Pescaia, Italy, L. Pasquini, S. Randich (eds.
The kink Casimir energy in a lattice sine-Gordon model
The Casimir energy of quantum fluctuations about the classical kink
configuration is computed numerically for a recently proposed lattice
sine-Gordon model. This energy depends periodically on the kink position and is
found to be approximately sinusoidal.Comment: 10 pages, 4 postscript figure
Dynamical Scaling Behavior of Percolation Clusters in Scale-free Networks
In this work we investigate the spectra of Laplacian matrices that determine
many dynamic properties of scale-free networks below and at the percolation
threshold. We use a replica formalism to develop analytically, based on an
integral equation, a systematic way to determine the ensemble averaged
eigenvalue spectrum for a general type of tree-like networks. Close to the
percolation threshold we find characteristic scaling functions for the density
of states rho(lambda) of scale-free networks. rho(lambda) shows characteristic
power laws rho(lambda) ~ lambda^alpha_1 or rho(lambda) ~ lambda^alpha_2 for
small lambda, where alpha_1 holds below and alpha_2 at the percolation
threshold. In the range where the spectra are accessible from a numerical
diagonalization procedure the two methods lead to very similar results.Comment: 9 pages, 6 figure
Simulations for single-dish intensity mapping experiments
HI intensity mapping is an emerging tool to probe dark energy. Observations
of the redshifted HI signal will be contaminated by instrumental noise,
atmospheric and Galactic foregrounds. The latter is expected to be four orders
of magnitude brighter than the HI emission we wish to detect. We present a
simulation of single-dish observations including an instrumental noise model
with 1/f and white noise, and sky emission with a diffuse Galactic foreground
and HI emission. We consider two foreground cleaning methods: spectral
parametric fitting and principal component analysis. For a smooth frequency
spectrum of the foreground and instrumental effects, we find that the
parametric fitting method provides residuals that are still contaminated by
foreground and 1/f noise, but the principal component analysis can remove this
contamination down to the thermal noise level. This method is robust for a
range of different models of foreground and noise, and so constitutes a
promising way to recover the HI signal from the data. However, it induces a
leakage of the cosmological signal into the subtracted foreground of around 5%.
The efficiency of the component separation methods depends heavily on the
smoothness of the frequency spectrum of the foreground and the 1/f noise. We
find that as, long as the spectral variations over the band are slow compared
to the channel width, the foreground cleaning method still works.Comment: 14 pages, 12 figures. Submitted to MNRA
Recommended from our members
Winter 1977
Influence of Management and Season on Fate of N Applied to Golf Greens (page 3) Potassium: The Mystery Element (9) Effect of IBDU and UF Rate, Date and Frequency of Application on Merion Kentucky Bluegrass (14
- …