28,020 research outputs found

    Study of Apollo water impact. Volume 6 - User's manual - Interaction Final report

    Get PDF
    Computer program for hydroelastic responses of flexible shells of revolution during axially symmetric impact into incompressible fluids as in Apollo water impac

    The decay of highly excited open strings

    Get PDF
    The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances

    Total Quantum Zeno effect and Intelligent States for a two level system in a squeezed bath

    Get PDF
    In this work we show that by frequent measurements of adequately chosen observables, a complete suppression of the decay in an exponentially decaying two level system interacting with a squeezed bath is obtained. The observables for which the effect is observed depend on the the squeezing parameters of the bath. The initial states which display Total Zeno Effect are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.Comment: 5 pages, 3 figure

    Lattice Model of Sweeping Interface for Drying Process in Water-Granule Mixture

    Get PDF
    Based on the invasion percolation model, a lattice model for the sweeping interface dynamics is constructed to describe the pattern forming process by a sweeping interface upon drying the water-granule mixture. The model is shown to produce labyrinthine patterns similar to those found in the experiment[Yamazaki and Mizuguchi, J. Phys. Soc. Jpn. \textbf{69} (2000) 2387]. Upon changing the initial granular density, resulting patterns undergo the percolation transition, but estimated critical exponents are different from those of the conventional percolation. Loopless structure of clusters in the patterns produced by the sweeping dynamics seems to influence the nature of the transition.Comment: 6 pages, 7 figure

    NICMOS and VLBA observations of the gravitational lens system B1933+503

    Get PDF
    NICMOS observations of the complex gravitational lens system B1933+503 reveal infrared counterparts to two of the inverted spectrum radio images. The infrared images have arc-like structures. The corresponding radio images are also detected in a VLBA map made at 1.7 GHz with a resolution of 6 mas. We fail to detect two of the four inverted radio spectrum components with the VLBA even though they are clearly visible in a MERLIN map at the same frequency at a different epoch. The absence of these two components could be due to rapid variability on a time-scale less than the time delay, or to broadening of the images during propagation of the radio waves through the ISM of the lensing galaxy to an extent that they fall below the surface brightness detectability threshold of the VLBA observations. The failure to detect the same two images with NICMOS is probably due to extinction in the ISM of the lensing galaxy.Comment: 5 pages, 4 figures, submitted to MNRA

    Arctic marine climate of the early nineteenth century

    Get PDF
    The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum) and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810 - 1825 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was considerable variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817) were noticeably warmer, and had less sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards. © 2010 Author(s)

    The Quantum-Classical Crossover in the Adiabatic Response of Chaotic Systems

    Full text link
    The autocorrelation function of the force acting on a slow classical system, resulting from interaction with a fast quantum system is calculated following Berry-Robbins and Jarzynski within the leading order correction to the adiabatic approximation. The time integral of the autocorrelation function is proportional to the rate of dissipation. The fast quantum system is assumed to be chaotic in the classical limit for each configuration of the slow system. An analytic formula is obtained for the finite time integral of the correlation function, in the framework of random matrix theory (RMT), for a specific dependence on the adiabatically varying parameter. Extension to a wider class of RMT models is discussed. For the Gaussian unitary and symplectic ensembles for long times the time integral of the correlation function vanishes or falls off as a Gaussian with a characteristic time that is proportional to the Heisenberg time, depending on the details of the model. The fall off is inversely proportional to time for the Gaussian orthogonal ensemble. The correlation function is found to be dominated by the nearest neighbor level spacings. It was calculated for a variety of nearest neighbor level spacing distributions, including ones that do not originate from RMT ensembles. The various approximate formulas obtained are tested numerically in RMT. The results shed light on the quantum to classical crossover for chaotic systems. The implications on the possibility to experimentally observe deterministic friction are discussed.Comment: 26 pages, including 6 figure
    corecore