19,459 research outputs found
Bacillus subtilis regulatory protein GerE
GerE is the latest-acting of a series of factors which regulate gene expression in the mother cell during sporulation in Bacillus. The gene encoding GerE has been cloned from B. subtilis and overexpressed in Escherichia coli. Purified GerE has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The small plate-like crystals belong to the monoclinic space group C2 and diffract beyond 2.2 Angstrom resolution with a synchrotron radiation X-ray source
Ytterbium-doped tantalum pentoxide waveguides: spectroscopy for compact waveguide lasers
Ytterbium-doped materials are common gain media in high-performance laser systems. In this work, the first spectroscopic investigation of ytterbium-doped tantalum pentoxide (Yb:Ta2O5) for compact waveguide laser applications is presented
Shock fragmentation model for gravitational collapse
A cloud of gas collapsing under gravity will fragment. We present a new
theory for this process, in which layers shocked gas fragment due to their
gravitational instability. Our model explains why angular momentum does not
inhibit the collapse process. The theory predicts that the fragmentation
process produces objects which are significantly smaller than most stars,
implying that accretion onto the fragments plays an essential role in
determining the initial masses of stars. This prediction is also consistent
with the hypothesis that planets can be produced by gravitational collapse.Comment: 22 pages, 3 figure
Crystallization of YIoQ, a GTPase of unknown function essential for Bacillus subtilis viability
YLoQ is a putative ATP/GTP-binding protein of unknown function identified from the complete sequence of the Bacillus subtilis genome. A gene-knockout programme established that yloQ is one of a set of some 270 indispensable genes for the viability of this organism. Crystals of YloQ have been grown from HEPES-buffered solutions at pH 7.5 containing polyethylene glycol and diffraction data have been collected extending to 2.5 Angstrom spacing
Super-diffusion in optical realizations of Anderson localization
We discuss the dynamics of particles in one dimension in potentials that are
random both in space and in time. The results are applied to recent optics
experiments on Anderson localization, in which the transverse spreading of a
beam is suppressed by random fluctuations in the refractive index. If the
refractive index fluctuates along the direction of the paraxial propagation of
the beam, the localization is destroyed. We analyze this broken localization,
in terms of the spectral decomposition of the potential. When the potential has
a discrete spectrum, the spread is controlled by the overlap of Chirikov
resonances in phase space. As the number of Fourier components is increased,
the resonances merge into a continuum, which is described by a Fokker-Planck
equation. We express the diffusion coefficient in terms of the spectral
intensity of the potential. For a general class of potentials that are commonly
used in optics, the solutions of the Fokker-Planck equation exhibit anomalous
diffusion in phase space, implying that when Anderson localization is broken by
temporal fluctuations of the potential, the result is transport at a rate
similar to a ballistic one or even faster. For a class of potentials which
arise in some existing realizations of Anderson localization atypical behavior
is found.Comment: 11 pages, 2 figure
Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis
Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium
Crystallization of the oligopeptide-binding protein AppA from Bacillus subtilis
AppA is the membrane-anchored extracellular receptor component of an ABC transporter responsible for the uptake of oligopeptides into Bacillus subtilis. AppA has been overexpressed as a cleavable maltose-binding protein fusion in Escherichia coli. Following removal of the fusion portion, AppA has been crystallized from morpholino-ethanesulfonic acid-buffered solutions at pH 6.5 containing polyethylene glycol and zinc acetate. A complete X-ray diffraction data set extending to 2.3 Angstrom spacing has been collected
Anomalous flux-flow dynamics in layered type-II superconductors at low temperatures
Low-temperature dissipation due to vortex motion in strongly anisotropic
type-II superconductors with a moderate disorder () is shown to be determined by the Zener-type transitions between
the localized electronic states in the vortex core. Statistics of these levels
is described by the random matrix ensemble of the class C defined recently by
Atland and Zirnbauer [cond-mat/9602137], so the vortex motion leads naturally
to the new example of a parametric statistics of energy levels. The flux-flow
conductivity is a bit lower than the quasiclassical one and {\it
grows} slowly with the increase of the electric field.Comment: 4 pages, Revte
Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences
India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia
Investigations of a combustible inertial launch design
The paper develops a subject of a combustible inertial (self-feeding) launch vehicle for nano and pico satellites. A part of the paper considers a flight of the rocket using ballistic, aerodynamic and thermal calculations. Another part describes experimental investigations of a laboratory-scale model of the rocket engine. Plans for future work and prospects of the self-feeding technology combined with pulse engine mode for microlaunchers and small satellite micro propulsion concludes the paper
- …